Ребенок должен помнить цифру не только во время движений, которые он делает, уходя с места и возвращаясь, но и во время выбора предметов, считая их один за другим.
Ребенок, получивший нуль, не должен двигаться с места, а между тем все его товарищи встают и свободно берут предметы, недоступные для него. Очень часто нуль выпадает на долю ребенка, который отлично умеет считать и с большим удовольствием набрал бы и разложил бы в красивом порядке кучку предметов на своем столике и потом спокойно ждал бы проверки учительницы. Любопытно наблюдать выражение на личиках детей, взявших нуль: эти индивидуальные различия – едва ли не откровение характеров детей. Одни остаются равнодушными, сидят с гордым видом, стараясь скрыть свое разочарование; другие проявляют это разочарование в беспокойных жестах, третьи не могут скрыть улыбки по поводу странного положения, в котором они очутились, и которое обращает на них любопытство товарищей; иные малютки следят за каждым движением товарищей чуть не с завистью, а другие быстро овладевают собой и смиряются. Не менее интересно выражение, с каким они признаются в том, что у них нуль, когда во время проверки их спрашивают: «А что же ты ничего не взял? ». «Я взял нуль». «У меня нуль». Таковы обычные слова; но выразительные личики и тон голоса свидетельствуют о большом разнообразии ощущений. Очень редко ребенок с явным удовольствием признается в этом необычайном факте; у большинства же вид удрученный, но покорный судьбе. И вот, у нас получается урок поведения. «Что, правда, трудно сохранить тайну нуля? Она так и бьет в глаза, а вы будьте равнодушны, не давайте понять, что у вас нет ничего! ». И в самом деле, через некоторое время чувство собственного достоинства берет перевес, малютки привыкают получать нуль и маленькие цифры и всячески стараются не обнаружить маленькой драмы, которую они переживают первое время.
Сложение и вычитание от одного до двадцати. – Умножение и деление. Для обучения первым арифметическим действиям мы пользуемся тем же дидактическим материалом, как и при нумерации, т. е. брусками, разделенными на дециметры и дающими первое представление о десятичной системе. Как я уже говорила, эти бруски мы обозначаем числами, которым они соответствуют: один, два, три и т. д. Они расположены в порядке их длины, т. е. в порядке нумерации. В первом упражнении мы начинаем складывать палочки так, чтобы получался десяток. Проще всего брать короткую палочку, начиная с первой, и прикладывать ее к концу соответствующей длиной, начиная от девяти и ниже. Например, так: «Возьми один и прибавь к девяти; возьми два и прибавь к восьми; возьми три и прибавь к семи; возьми четыре и прибавь к шести». Так мы получаем четыре палочки, равные десяти. Остается палочка пять; но, повернув ее другим концом, мы видим, что она укладывается от одного конца десятка до другого, с очевидностью доказывая, что дважды пять равно десяти. По мере того как упражнения повторяются, ребенок обучается техническому языку: девять плюс один равно десяти; восемь плюс два равно десяти; семь плюс три равно десяти; шесть плюс четыре равно десяти; что касается пяти, то дважды пять равно десяти. Наконец, если ребенок умеет писать, мы знакомим его со значками: + плюс, × умножить и = равно. Дети изображают это все в своих тетрадях. Когда дети все это хорошенько заучат и с большим удовольствием изложат на бумаге, мы обращаем их внимание на то, что получается, если разнимать палочки, составляющие десяток, и класть каждую на место. От последнего из составленных десятков мы отнимаем четыре, и останется шесть, от следующего отнимем три, и останется семь, от следующего – 2, и останется восемь, от последнего отнимем один, и остается девять. Точнее говоря, десять без четырех равно шести, десять без трех равно семи, десять без двух равно восьми, десять без одного равно девяти.
Что касается оставшихся пяти, то это – половина десяти, и разрезав длинную палочку пополам, т. е. разделив десять на два, мы получим пять. Десять, деленное на два, равно пяти. Записывается это так:
10: 2 = 5
Овладев этим упражнением, дети самостоятельно продолжают его. Можно ли получить три двумя способами? Мы кладем один после двух и затем, чтобы запомнить сделанное, пишем: 2+1=3. Можно ли сделать, чтобы две палочки равнялись четырем? 3+1=4, а 4–3=1. 4–1=3. Палочка «два» в отношении к палочке «четыре» тоже находится в таком же отношении к палочке «четыре», как пять к десяти; 4: 2=2; 2× 2=4. Задача: узнаем, с каким числом палочек можно играть в эту игру? Можно взять 3 и 6; или 4 и 8. В этом пункте нам приходят на помощь кубики из игры на запоминание чисел. Если разложить кубики по два в ряду, то сразу видно, какие числа делятся на два, – все те, у которых внизу не имеется одинокого кубика. Все эти четные или парные числа, ибо их можно разложить парами по два; делить их на два легко: необходимо только отделить два ряда кубиков, стоящих один под другим. Сосчитав кубики каждого ряда, мы получим частное, а чтобы вновь составить первоначальное число, надо только снова собрать два ряда: 2× 3=6. Для детей пяти лет все это не представляет затруднений. Повторения вскоре надоедают; но упражнение можно видоизменить, взяв опять серию длинных палочек, и вместо того чтобы прикладывать палочку к девяти, приложить ее к десяти. Равным образом мы можем приложить два к девяти, а три к восьми; мы получим палочки длиннее десяти; получим длины в одиннадцать, двенадцать, тринадцать и т. д. до двадцати. Для заучивания этих более высоких чисел можно пользоваться и кубиками. Проделав действия с десятком, мы без труда переходим к двадцати. Единственное затруднение – десятичные числа, знакомство с которыми требует особых уроков.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|