Рис. 84. Гомологичность элемента Оптимистической пещеры, Подолия (А) и фрактального кластера, входящего в каркас шаровой молнии (Б). Разница в масштабах миллиард раз!
Итак, система пещер обладает симметрией на высшем уровне - отдельной полости или образующей ее сети ходов. Спустимся на второй уровень. Спелеологи хорошо знают, что в поперечном сечении, в зависимости от геологического строения (монолитные, неслоистые породы или слоистая толща, падающая под углами от 0 до 90°) и условий образования (вадозные или фреатические), все пещеры имеют одинаковые элементарные сечения: круговое, эллиптическое, прямоугольное, квадратное, трапециевидное или треугольное. Все их многообразие - это осложнение исходных форм или их комбинация. Самый известный случай - сечение " замочная скважина" - округлый ход, прорезанный снизу вертикальной щелью (это свидетельствует о проработке пещеры в две стадии - сперва напорным, а затем безнапорным потоком). Третий уровень - форма отложений разного генезиса. Симметрией часто обладают обвальные отложения. В зависимости от особенностей залегания и трещиноватости вмещающих пород в их составе нередки глыбы, близкие по форме к параллелепипеду. Водные механические отложения обладают симметрией более высокого порядка. В руслах подземных потоков формируются песчано-галечниковые отложения разной степени окатанности. Их очертания соответствуют кругам и эллипсам, а объем - трехосному эллипсоиду, обладающему тремя осями, тремя плоскостями и одним центром симметрии. Степень окатанности (то есть округления ребер первичного обломка) и соотношение осей эллипсоида характеризуют дальность транспортировки и расход водного потока. Если обломки горной породы выносятся из сифонных каналов, то возникает более высокая симметрия: эллипсоид превращается в шар с коэффициентом сферичности до 0, 95. Если на полу пещеры встречается " пятно" хорошо отсортированного песчаного, гравийного или галечникового материала, то опытный спелеолог немедленно начнет искать сифонный канал, из которого в паводок вырывается поток воды. Зная размеры окатанных обломков, можно определить его скорость и расход. В отдельных случаях возможно образование довольно крупных шаров, имеющих диаметр до 10 см. Такие " окатыши" обнаружены на подводных полках в сифоне Пания в Крыму. В редких случаях под землей встречаются валуны диаметром более 0, 5 м, занесенные с поверхности или образованные на месте. Так, в Нижней Шакуранской пещере (Грузия) гранитные валуны диаметром до 200 мм встречаются на расстоянии более 2 км от входа в систему.
Какие ассоциации возникают у спелеолога при взгляде на рис. 85? Конечно же, это цепочка сталагмитов, образовавшихся на полу пещеры под трещиной в ее своде, скажут они. Но математик сразу поймет, что это - иллюстрация к книге, состоящей только из колонок цифр - " сборника таблиц специальных функций"... На рисунке изображена поверхность модуля комплексной гамма-функции Эйлера. Кроме сталактитов и сталагмитов симметрией часто обладают и другие водные хемогенные отложения. Один из примеров - " пещерный жемчуг" - округлые стяжения кальцита, состоящие из полугодичных слоев карбоната кальция, разделенных более тонкими карбонатно-глинистыми прослойками. Любопытно, что на начальном этапе жемчужинки могут и не обладать симметрией: " затравкой" для них служит песчинка, обломок натека или косточки позвоночного. Но постепенно он " обрастает" кальцитом и приобретает все более округлые формы; в конце концов образуется жемчужина, имеющая симметрию шара. Описаны, правда, удивительные жемчужины, обладающие симметрией куба (пещера Кастельгард, Канада) или эллипсоида (пещера Эгиз-Тинах-3, Украина).
В великолепной монографии К. Хилл и П. Форти /36/ описано около 170 " пещерных" минералов. Многие из них обладают симметрией разных категорий - от низшей (отсутствие осей симметрии порядка выше 2) до высшей (имеется несколько осей симметрии). Один из самых удивительных случаев - спиральный кристалл малахита длиной 3 мм из пещеры в Австрии. Интересно, что спираль имеет правую закрутку. Возможно, это связано с действием силы Кориолиса, которая в Северном полушарии вследствие вращения Земли отклоняет все движущиеся потоки вправо. Но сказывается ли она на росте кристаллов? Эксперименты с органическими соединениями (сок каучуковых деревьев) в США всегда давали правозакрученную спираль, а в Австралии, где сила Кориолиса " работает" влево, на каждые 3 левозакрученных приходился один правозакрученный кристалл... Причины такого поведения кристаллов пока не ясны. В монографии И. И. Шафрановского /29/ подобраны многочисленные примеры симметрии в мире неживой природы. Их следует дополнить и приведенными примерами из пещер. Кроме " билатеральной" симметрии разных представителей спелеофауны надо вспомнить и о " поведенческой" симметрии летучих мышей. Как мы уже рассказывали, их стаи обычно образуют на вылете " правовращающий" вихрь. Но в пещерах близ Карловых Вар (Чехия) они почему-то кружатся по спирали, закрученной против часовой стрелки... Рис. 86. Строение сталактита (А) и псевдосталактита (Б). Пунктир - ось симметрии На этом можно было бы закончить рассказ о симметрии подземного мира, если бы не псевдосталактиты. Еще в 1916 г. А. Е. Ферсман указывал, что сталактиты могут быть сложены не только кальцитом (СаСО3), но и кремнеземом (SiO2). Сейчас известно, что капельные формы, имеющие симметрию конуса, образуют десятки минералов классов карбонатов, сульфатов, галоидов, нитратов, фосфатов, оксидов и гидрооксидов. Но одновременно выяснилось, что такие минералы, как скрытокристаллическая разность кварца - халцедон (SiO2) и серный колчедан - пирит (FeS2), образуют псевдосталактиты. Этот термин предложил Р. Лизеганг, очевидно имея в виду сходство отдельных сосулек со сталактитами пещер. Но сходство это чисто внешнее: псевдосталактит имеет симметрию цилиндра, разветвляется или изгибается под углами до 180° (рис. 86).
Затем выявились и более глубокие отличия: сталактиты растут в воздушной среде, подчиняясь силе тяжести, а псевдосталактиты - в растворе солей, заполняющем камеру, и не зависят от нее... Решение проблемы зашло в тупик. Русский минералог Ф. В. Чухров в 1940 г. предложил мембранно-осмотическую гипотезу. Сперва полость заполнилась раствором силикатов щелочных металлов. Затем через поры в известняке начали поступать растворы солей железа, марганца и пр. В устьях пор они приходили в соприкосновение с раствором, и стенки полости покрылись мембранной пленкой. Осмотическое давление отрывало ее от стены и формировало мембранные трубки с изгибами и ветвями, которые затем заполнялись сферолитами халцедона. Разработка проблемы симметрии карстовых полостей еще только начата. Для выявления ее законов следует привлечь учение о симметрии подобия А. В. Шубникова, идеи о криволинейной симметрии Д. В. Наливкина, цветную симметрию Н. В. Белова, гомологию В. И. Михеева и А. Р. Эразо. Видите, как далеко завели нас чиновники из УВС... 16. 6. Небожители спускаются е пещеры В середине XX в. классическая " телескопная" астрономия получила мощную поддержку - начали бурно развиваться радиоастрономия и астрофизика. В 1959 г. М. А. Марков выдвинул идею проведения крупномасштабных экспериментов для изучения нейтрино - удивительных частиц материи, возникающих при ядерных реакциях превращения четырех ядер водорода в гелий. Источниками нейтрино являются Солнце и далекий Космос. Они обладают колоссальной проникающей способностью и поддаются изучению только с помощью огромных детекторов массой 90-8000 т, спрятанных глубоко под землю. Первая подземная установка была создана в действующей золотодобывающей шахте Колар (Южная Индия, глубина 2900 м). Сейчас работает более десятка различных установок, размещенных в золотодобывающих шахтах Южной Африки и США (2500-3000 м), в тоннелях под Альпами (2500- 2700 м), в горизонтальных штольнях Баксанского ущелья (100-2000 м), в соляных шахтах Артемовска (300 м) и др. На них решаются разные задачи: регистрация " солнечных" нейтрино и их осцилляции, выявление безнейтринного -распада, распада протонов, фиксация нейтрино при рождении Сверхновых звезд (к радости астрономов, это редкое явление, наблюдающееся один-два раза в столетие, произошло в феврале 1987 г. ), регистрация монополей, возникающих при галактических взаимодействиях, и пр. ... Это дорогостоящие уникальные эксперименты, для проведения которых создаются международные коллективы.
Шахты и штольни скоро перестали удовлетворять астрономов по размерам, расположению, по возможностям использования. Действующие шахты создают пылевые, температурные, электрические помехи, а их закрытие как нерентабельных иногда приводит к ликвидации астрофизических лабораторий. Это вдохновило " небожителей" на новые подвиги: если нет подходящих пространств - их надо создать! В 1954 г. была учреждена Европейская организация ядерных исследований (ЦЕРН). Вскоре в Швейцарии было построено самое большое в мире сооружение для изучения ядерных частиц - кольцевой ускоритель длиной 26, 6 км, залегающий на глубине 50-170 м под землей. Диаметр его галерей составлял 3, 8 м. Ускорители меньших размеров (1, 5-3 км) сооружены под Мюнхеном (Германия), в Протвино (Россия), в Техасе (США). Как будут использоваться эти подземные пространства после завершения экспериментов? Не придется ли исследовать их спелеологам XXI или XXII веков? Иногда различные подземные пространства используются не только для изучения Космоса, но и для защиты от его проявлений. Согласно одной из гипотез развития человека (В. Г. Власов), в 44-42 тыс. до н. э. произошла инверсия магнитного поля Земли и резкое усиление ионизирующего излучения. Это привело к усилению гроз, спасаясь от которых люди начали укрываться в пещерах. То же происходило при появлении на небосводе крупных комет. Так, в 1910 г. комета Галлея вызвала панику в Северной Америке. В штатах Вирджиния и Кентукки, особенно богатых карстовыми формами, люди укрывались от ее " гнева" в пещерах. Паника не миновала и Европу - недаром Н. Н. Гумилев откликнулся на это событие строками: Комет бегущих душный чад Интересно, что в последние годы под землей были обнаружены и более вещественные примеры связи с Космосом. Детальное изучение минеральных отложений подземных рек Крыма выявило в его составе более 30 различных минералов. Это естественный обогащенный шлих, в котором происходит накопление минералов, даже в малых количествах рассеянных во вмещающих известняках. Поэтому неудивительно, что некоторые минералы были обнаружены в пещерах раньше, чем на поверхности (галенит, сфалерит, касситерит, апатит и пр. ).
Неожиданностью стало другое - нахождение геологом и спелеологом Ю. Полкановым отдельных зерен минералов космогенного (метеоритного) происхождения - муассанита (SiC), когенита (Fe3C), самородного железа с характерными видманштеттовыми фигурами травления и шариков, состоящих из железа (Fe) и иоцита (FeO). Исследования космических лучей, проведенные под землей, показали, что применяемые методы могут быть полезны и для " землян". Калибровочная кривая поглощения потоков мюонов в " стандартном грунте" (в пересчете на эквивалентную по весу толщу воды) позволяет " просвечивать" верхние слои земной коры. При этом решаются разные задачи: проверяется глубина заложения тоннелей при их проходке, уточняется геологический разрез, определяется положение рудных тел, зон нарушений под горными выработками и карстовыми полостями, определяется плотность горных пород и давление на грунт разных сооружений. При строительстве подземного комплекса " Охотный ряд" возникла необходимость уточнить давление на грунт гостиницы " Москва". Вес здания, определенный с помощью мюонного телескопа, оказался равным 45 тыс. т, что эквивалентно давлению 1, 1 кг/см2. С помощью регистрации космических лучей была просвечена из погребальной камеры пирамида Хефрена. Никаких пустот в ее верхней части не оказалось. В ряде пещер мира (Имре-Вашш, Венгрия; Кунгурская, Россия; Эмине-Баир-Хосар, Украина) успешно работали различные приборы (наклономеры, деформографы, интерферометры), фиксирующие сейсмическую активность и " твердые приливы" - прохождение лунной и солнечной приливных волн через горные породы, вызывающее ритмические сдвижение-раздвижение стенок пещер и изменение водопритока из пор и трещин. При подготовке полета к Марсу американские астрономы столкнулись со сложной проблемой: как доказать наличие или отсутствие на нем жизни? Ответ пришел из пещер. Из светляков пещеры Уайтомо (Новая Зеландия) было выделено органическое вещество люциферин и фермент люцифераза. Они начинают светиться только в присутствии аденозинтрифосфорной кислоты - АТФ. На Марс была отправлена капсула с экстрактом из светляков и прибором, регистрирующим световое излучение. Излучение зарегистрировано не было... В 90-е гг. неожиданно наметился еще один аспект проблемы изучения пещер. Серьезные исследователи США, представляющие разные научные направления (геологию, геохимию, микробиологию, аэронавтику), предложили использовать огромную (свыше 140 км! ) пещеру Лечугия, недавно открытую в Карсбадском национальном парке, как полигон для отработки методик и технологий исследований по программе поисков жизни на Марсе. Основное внимание следует уделить геохимии вмещающих пород как возможной питательной среде микроорганизмов и геомикрофлоры, изучению микробных сообществ, обитающих в пещере. Так смыкаются подземные и космические проблемы. Хотим мы или нет, но все земляне - пассажиры огромного звездолета, несущегося в бескрайних просторах Космоса. И, выходя из пещер, мы прежде всего видим над собою Небо... 16. 7. На встречу с селенитами В декабре 1969 г. венгерский спелеолог Г. Денеш разослал друзьям традиционный рисунок - поздравление с Новым годом. На сей раз он изображал земных спелеологов в летящей к Луне ракете, использующей " двойную тягу" - тройку летучих мышей и газ, выходящий из бутылки с шампанским (рис. 87). В каждой шутке есть доля истины. Что же ждет спелеологов на других небесных телах?
Рис. 87. Новогоднее поздравление венгерского спелеолога Г. Денеша В 1901 г. Герберт Уэллс в фантастическом романе " Первые люди на Луне" описал огромные пещеры, галереи и шахты, построенные селенитами. А в 1923 А. Толстой в романе " Аэлита" поведал о вулканических и карстовых пещерах Марса, где укрывалась от пронизывающей стужи близкая землянам цивилизация... Но уже в 80-е гг. XX в. начали появляться статьи на страницах научных журналов, в которых обсуждается удивительное сходство между формой и размерами лунных кратеров и провалами над вулканическими и карстовыми пещерами (В. Холлидей), доказывается возможность существования тектонических, лавовых, суффозионных и термокарстовых полостей на Марсе (Д. Бейкер, Р. Стром), упоминается о наличии пустот, напоминающих карстовые, на спутнике Юпитера Ганимед (Дж. Бири). Полученные " Вояджером" снимки его второго спутника - Европы, выявили мощную ледяную кору, в которой возможно существование ледниковых пещер. В 60-е гг. во многих районах Земли были обнаружены гидратные залежи углеводородных газов. Один объем воды в гидратном состоянии связывает до 300 объемов газа. Гидраты внешне схожи со спрессованным снегом или молодым льдом. Гляциолог И. Д. Данилов (1990) предположил, что в газогидратных толщах некоторых планет (например, Марса) возможно формирование пещер. Сейсмометры, установленные на Луне, отреагировали на падение последней ступени лунной ракеты своеобразно: многие ученые склонны винить в этом имеющиеся в ее теле пустоты... Пока это только смелые гипотезы, но кто знает, что ждет спелеологов в Космосе в XXI веке?
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|