Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Трансмембранный перенос (транспорт в-в через плазмолемму)




Следует разделять способы помолекулярного (поионного) и мультимолекулярного трансмембранного переноса. В первом случае мол-лы (ионы) в-ва проходят через мембрану относительно независимо др от друга. Во втором — за один акт переноса перемещается сразу огромное число молекул. Способы помолекулярного переноса: (данные способы транспорта используются только для низкомолекулярных в-в)

- простая диффузия — самостоятельное проникновение в-в через мембрану по градиенту концентрации.Так проходят небольшие нейтральные мол-лы (Н2О, СО2, О2) и низкомолекулярные гидрофобные орг в-ва (жирные к-ты, мочевина)

- облегченная диффузия — проходит через мембрану также по градиенту концентрации, но помощью спец белка — транслоказы, которые образуют в мембране транспортные каналы. Примерами таких каналов являются ионные каналы — в частности К+ - каналы, Na+ - каналы, анионные канали и т. д.

- Активный транспорт — в-ва переносятся с помощью спец транспортной сис-мы (насоса) против градиента концентрации. Для этого требуется энергия (АТФ). Пример подобных сис-м: Na+, K+ - насос (или Na+, K+ - АТФаза).

Способы мультимолекулярного переноса:

1) Эндоцитоз — различают 2 разновидности эндоцитоза

- пиноцитоз — захват и поглощение клеткой рас-ров в-в

- фагоцитоз — перенос в клетку тв частиц

2) экзоцитоз — здесь тоже существует 2 варианта, в зависимости от растворимости выделяемых из клетки в-в:
- секреция — мультимолекулярное выделение из клетки растворенных в-в
- экскреция — выведение из клетки тв части.

- Существует еще одно понятие — трансцитоз (или рекреция), это перенос в-в через клетку; здесь сочетаются эндо- и экзоцитоз

№4 Эукариотическая клетка- форма организации живой материи. Основные структурные компоненты эукариот клетки. Ядро. Взаимосвязь струк-ры и фун-ции. (про эукариот кл и компоненты в билете №3подробно)

Ядро — это один из структурных компоненто вHYPERLINK "http://ru.wikipedia.org/wiki/Эукариоты"эукариотическойHYPERLINK "http://ru.wikipedia.org/wiki/Клетка"клетки, содержащий генетическую информацию(молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтезаHYPERLINK "http://ru.wikipedia.org/wiki/Белок"белка. Ядро состоит из хромати́на, я́дрышка, кариопла́змы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация(или редуплика́ция) — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Синтезированные в ядре молекулы РНК модифицируются, после чего выходят в цитоплазму. Образование обеих субъединиц рибосом происходит в специальных образованиях клеточного ядра — ядрышках. Таким образом, ядро клетки является не только вместилищем генетической информации, но и местом, где этот материал функционирует и воспроизводится.Cтруктура клеточного ядра: хроматин; ядерная оболочка, ядерная ламина и ядерные поры; ядрышко, ядерный матрикс.

1) Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками, необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения»- гистоны. Из этих белков построены нуклеосомы - структуры, на которые намотаны нити молекул ДНК. Нуклеосомы располагаются довольно регулярно,она состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа— всего восемь белков. Гистон H1, более крупный чем другие гистоны, связывается с ДНК в месте ее входа на нуклеосому. Нуклеосома вместе с H1 называется хроматосомой.

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине, не транскрибируется, обычно это состояние характерно для незначимых или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов —ацетилированиеми фосфорилированием.
2) Ядерная оболочка, ядерная ламина и ядерные поры (кариолемма) От цитоплазмы ядро отделено ядерной оболочкой, образованной за счёт расширения и слияния друг с другом цистернэндоплазматической сетитаким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жёсткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомнойДНК. Ламины прикрепляются к внутренней мембране ядерной оболочки при помощи заякоренных в ней трансмембранных белков — рецепторов ламинов. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой. Пора не является дыркой в ядре, а имеет сложную структуру, организованную несколькими десятками специализированных белков — нуклеопоринов.

3) Ядрышко -находится внутри ядра, и не имеет собственной мембранной оболочки Основной функцией ядрышка -синтез рибосом. В геномеклетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие геныHYPERLINK "http://ru.wikipedia.org/wiki/РРНК"рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки, принимающие участие в этих процессах. Некоторые из этих белков имеют специальную последовательность— сигнал ядрышковой локализации. Самая высокая концентрация белка в клетке наблюдается именно в ядрышке. В этих структурах было локализовано около 600 видов различных белков, лишь небольшая их часть действительно необходима для осуществления ядрышковых функций, а остальные попадают туда неспецифически.

4) Ядерный матрикс - называют нерастворимый внутриядерный каркас. Считается, что матрикс построен преимущественно из негистоновых белков, формирующих сложную разветвленную сеть, сообщающуюся с ядерной ламиной. Возможно, ядерный матрикс принимает участие в формировании функциональных доменов хроматина. Впрочем, не все исследователи признают существование ядерного матрикса. Для осуществления процессов репликации, транскрипции, а также поддержания определенного положения хромосом в обьеме ядра существуют каркасные белковые структуры - ядерный белковый матрикс. Наблюдения показывают, что компоненты ядерного матрикса — это не жесткие застывшие структуры, они динамичны и могут сильно видоизменяться в зависимости от функциональных особенностей ядер. Показано, что белковый матрикс имеет множество точек прочного связывания с ДНК ядра, которая, в свою очередь, имеет специальные последовательности нуклеотидов, необходимые для этого.

Репликация и транскрипция

Клетки эукариот содержат обычно несколько хромосом (от двух до нескольких сотен), которые теряют в ядре (в интерфазе, т. е. между митотическоми делениями) клетки свою компактную форму, разрыхляются и заполняют объем ядра в виде хроматина. Несмотря на деконденсированное состояние, каждая хромосома занимает в ядре строго определенное положение и связана с ядерной оболочкой посредством ламины. Строго закреплены на внутренней поверхности оболочки ядра такие структуры хромосом, как центромеры и теломеры. На определенной стадии жизненного цикла клетки, в синтетическом периоде, происходит репликация, т. е. удвоение всей ДНК ядра, и хроматина становится в два раза больше. Белки, необходимые для этого процесса, поступают, конечно, из цитоплазмы через ядерные поры. Таким образом, клетка готовится к предстоящему клеточному делению — митозу, когда общее количество ДНК в ядре вернется к первоначальному уровню.

Реализация генетической информации, заключенной в ДНК в виде генов, начинается с транскрипции, т. е. с синтеза информационных РНК (и-РНК) — точных копий генов, по которым затем будут строиться в цитоплазме на рибосомах белки. Этот процесс проходит в различных точках в обьеме ядра, морфологически ничем не отличающихся от окружающего хроматина. Чаще всего удается наблюдать транскрипцию диффузного, т.е. деконденсированного хроматина.

Кроме хроматина, составляющего хромосомы, в ядрах эукариот обычно содержится одно или несколько ядрышек. Это плотные структуры, не имеющие собственной оболочки и представляющие собой скопления молекул другого типа РНК — рибосомной РНК (р-РНК) в комплексе с белками. Такие комплексы называют рибонуклеопротеидами (РНП). Ядрышки имеют стандартную морфологию и образуются в ядре после деления клетки вокруг постояннодействующих точек активного синтеза рибосомной РНК. Гены рибосомной РНК, в отличие от большинства других генов, кодирующих белки, содержатся в геноме в виде многочисленных копий. Эти копии, расположенные в молекуле ДНК тандемно, т. е. друг за другом, располагаются в определенных районах нескольких хромосом генома. Такие районы хромосом называют ядрышковыми организаторами. Морфологически в ядрышке с помощью электронного микроскопа можно выделить следующие 3 зоны: гомогенные компактные фибриллярные центры, содержащие ДНК ядрышковых организаторов; плотный фибриллярный компонент вокруг них, где идет транскрипция генов рибосомной РНК и массивный гранулярный компонент ядрышка, состоящий из частиц РНП — будущих рибосом. Эти гранулы РНП, образующиеся в ядрышке, транспортируются в цитоплазму и образуют рибосомы, осуществляющие синтез всех белков клетки. Третий основной тип клеточных РНК — мелкие транспортные РНК — транскрибируются в различных участках ядра и выходят в цитоплазму через ядерные поры. Там они, как известно, обеспечивают транспортировку аминокислот к рибосомам в процессе синтеза белков.

№5 Эукариотическая клетка- форма организации живой материи. Двумембранные органеллы. Взаимосвязь структуры и функии.

Органоиды или органеллы — постоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы делятся на две группы: мембранные и немембранные. Мембранные органеллы представлены двумя вариантами: двумембранным и одномембранным. Двумембранными компонентами являются пластиды, митохондрии и клеточное ядро. (билет №4 -ядро).

1) Митохондрии -особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии. Внутренний просвет митохондрий, называемый матриксом, отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии. Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы, что, безусловно, указывает на симбиотическое происхождение этих органелл. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов.Наличие собственных рибосом и ДНК позволяет митохондриям осуществлять синтез некоторых белков независимо от ядра клетки,т.е они в определенной степени автономные структуры.
Формы и размеры: сферические, овальные и цилиндрические тельца, а также нитевидной формы. Длина нитевидных форм достигает 15 – 20 мкм. Функции:расщепление углеводов и жирных кислот, Синтез АТФ, Синтез белка (билете №3 - митохондрии)

2) Пластиды - внутриклеточные органеллы цитоплазмы автотрофных растений, содержащие пигменты и осуществляющие синтез органических веществ. У высших растений различают 3 типа П.: зелёные хлоропласты (ХП), бесцветные лейкопласты (ЛП) и различно окрашенные хромопласты (ХР). Совокупность всех типов носит название пластом или пластидом.Есть лишь в растительных клетках. Они встречаются у всех растений, за исключением некоторых бактерий, водорослей, миксомицетов и грибов. У водорослей функции пластид выполняет хроматофор. Для этих органелл характерно наличие пигмента (хлорофилл и каротиноиды), а также способность синтезировать и накапливать запасные вещества (крахмал, жиры и белки).

Лейкопласты — бесцветные сферические пластиды в клетках растений.Лейкопласты образуются в запасающих тканях (клубнях, корневищах), клетках эпидермы и других частях растений. Синтезируют и накапливают крахмал,жиры, белки. Лейкопласты содержат ферменты, с помощью которых из глюкозы, образованной в процессе фотосинтеза, синтезируется крахмал. На свету лейкопласты превращаются в хлоропласты.

Хромопласт (окрашенные пласты) — окрашенные незелёные тела, заключающиеся в телах высших растений, в отличие от зелёных тел (хлоропластов). Xромопласты содержат лишь жёлтые, оранжевые и красноватые пигменты из ряда каротинов.Xромопласты происходят большей частью из хлоропластов, которые теряют хлорофилл и крахмал, что заметно в лепестках, в ткани плодов и т. д. Так же как и у хлоропластов, у хромопластов пигмент образует в протоплазматической, бесцветной основе лишь отдельные включения, причём иногда в виде настоящих кристаллов, игольчатых, волосовидных, прямых или изогнутых и т. д.

Хлоропласты — зелёные пластиды, которые встречаются в клетках фотосинтезирующих эукариот. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл. Под двойной мембраной имеются тилакоиды(мембранные образования, в которых находится электронтранспортная цепьхлоропластов). Тилакоиды высших растенийгруппируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых друг к другу тилакоидов, имеющих форму дисков. Соединяются граны с помощью ламелл. Пространство между оболочкой хлоропласта и тилакоидами называется стромой. В строме содержатся хлоропластные молекулы РНК,пластидная ДНК, рибосомы, крахмальные зёрна, а также ферменты цикла Кальвина.

№6 Эукариотическая клетка — форма организации живой материи. Одномембранные органеллы. Взаимосвязь струк-ры и фун-ции.

К одномембранеым оргоноидам относятся: ЭПС, аппарат Гольджи, лизосомы, вакуоль, везикулы.
1) Эндоплазматическая сеть -(ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут. Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты («отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

2) Аппарат Гольджи -или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены. Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра). Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.
3) Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом. Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки. Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями. Автофагия — процесс уничтожения ненужных клетке структур.

4)Вакуоль — одномембранный органоид, содержащийся в некоторых эукариотическихHYPERLINK "http://ru.wikipedia.org/wiki/Клетка"клетках и выполняющий различные функции (секреция, экскреция и хранение запасных веществ, аутофагия, автолиз и др.). Вакуоли и их содержимое рассматриваются как обособленный от ц итоплазмыHYPERLINK "http://ru.wikipedia.org/wiki/Компартмент"компартмент. Различают пищеварительные и сократительные (пульсирующие) вакуоли, регулирующие осмотическое давление и служащие для выведения из организма продуктов распада. Вакуоли особенно хорошо заметны в клетках растений: во многих зрелых клетках растений они составляют более половины объёма клетки. Одна из важных функций растительных вакуолей — накопление ионов и поддержание тургора (тургорного давления). Вакуоль — это место запаса воды. Вакуоли развиваются из цистерн эндоплазматической сети.Мембрана, в которую заключена вакуоль, называется тонопласт. В вакуолях содержатся органические кислоты, углеводы, дубильные вещества, неорганические вещества (нитраты, фосфаты, хлориды и др.), белки и др.

5) Везикула — это относительно маленькие внутриклеточные органоиды, мембрано-защищенные сумки, в которых запасаются или транспортируются питательные вещества. Везикула отделена от цитозоля минимальным липидным слоем.Везикула — это базисный инструмент клетки, обеспечивающий метаболизм и транспорт вещества, хранение ферментов также как настоящий химически инертный отсек. Также везикулы играют роль в поддержании плавучести клетки.Некоторые везикулы способны образовываться из частей плазматической мембраны.

№7 Эукариотическая клетка — форма организации живой материи. Немембранные органеллы. Взаимосвязь струк-ры и фун-ции.
К немембранным органоидам относятся рибосомы, клеточный центр (центриоль), цитоскелет.

1) Рибосомы – органоиды, встречающиеся в клетках всех организмов. Это мелкие органеллы, представленные глобулярными частицами диаметром порядка 20 нм. Рибосомы состоят из двух субъединиц неравного размера — большой и малой, на которые они могут диссоциировать. В состав рибосом входят белки и рибосомальные РНК (рРНК). Молекулы рРНК составляют 50-63% массы рибосомы и образуют ее структурный каркас. Большинство белков специфически связано с определенными участками рРНК. Некоторые белки входят в состав рибосом только во время биосинтеза белка. В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядернойструктуре — ядрышке.

Рибосомы представляют собой нуклеопротеид, в составе которого отношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНКсоставляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S, 5.8S и 28S рРНК синтезируются в ядрышке РНК полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируется РНК полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.Константа седиментации(скорость оседания в ультрацентрифуге) рибосом эукариотических клеток равняется 80S (большая и малая субъединицы 60S и 40S, соответственно), бактериальных клеток (а также митохондрий ипластид) — 70S (большая и малая субъединицы 50S и 30S, соответственно). Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.

Трансляция — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Рибосомы представляют собой рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодоновмРНК, сопоставлении им соответствующих антикодонов тРНК, несущих аминокислоты, и присоединении этих аминокислот к растущей белковой цепи.

Процесс трансляции разделяют на

- инициацию — узнавание рибосомой стартового кодона и начало синтеза.

- элонгацию — собственно синтез белка.

- терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.

2) Центриоль — внутриклеточный органоидHYPERLINK "http://ru.wikipedia.org/wiki/Эукариоты"эукариотическойклетки, представляющий тельца в структуре клетки, размер которых находится на границе разрешающей способности светового микроскопа.Эти органеллы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках центриоли часто определяют полярность клеток эпителия и располагаются вблизи комплекса Гольджи. Удвоение центриолей происходит не делением, а путём синтеза новой структуры, перпендикулярной существующей. Центриоли, по-видимому, гомологичны базальным телам жгутиков и ресничек.

3) Цитоскелет -К элементам цитоскелета относят белковые фибриллярные структуры, расположенные в цитоплазме клетки: микротрубочки, актиновые и промежуточные филаменты. Микротрубочки принимают участие в транспорте органелл, входят в состав жгутиков, из микротрубочек строится митотическое веретено деления. Актиновые филаменты необходимы для поддержания формы клетки, псевдоподиальных реакций. Роль промежуточных филаментов, по-видимому, также заключается в поддержании структуры клетки. Белки цитоскелета составляют несколько десятков процентов от массы клеточного белка.

№8 Прокариотичсекая клтека- форма организации живой материи. Примеры. Особенности строения, морфологические и функциональные отличия от эукариотической клетки.

Прокариоты— организмы, не обладающие оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи(представляют собой одноклеточные микроорганизмы, не имеющие ядра, а также каких-либо мембранных органелл). Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондриии пластиды. Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма. Клетка прокариот обладает рядом принципиальных особенностей, касающихся как ее ультраструктурной, так и химической организации. Структуры, расположенные снаружи от ЦПМ (клеточная стенка, капсула, слизистый чехол, жгутики, ворсинки), называют обычно поверхностными структурами. Термином "клеточная оболочка"часто обозначают все слои, располагающиеся с внешней стороны от ЦПМ (клеточная стенка, капсула, слизистый чехол). ЦПМ вместе с цитоплазмой называется протопластом. Рассмотрим сначала строение, химический состав и функции поверхностных клеточных структур.

Основное отличие прокариотических клеток от эукариотических заключается в том, что их ДНК не организована в хромосомы и не окружена ядерной оболочкой. Эукариотические клетки устроены значительно сложнее. Их ДНК, связанная с белком, организована вхромосомы, которые располагаются в особом образовании, по сути самом крупном органоиде клетки - ядре. Кроме того, внеядерное активное содержимое такой клетки разделено на отдельные отсеки с помощью эндоплазматической сети, образованной элементарной мембраной. Эукариотические клетки обычно крупнее прокариотических. Их размеры варьируют от 10 до 100 мкм, тогда как размеры клеток прокариот (различных бактерий, цианобактерий - сине- зеленых водорослей и некоторых других организмов), как правило, не превышают 10 мкм, часто составляя 2-3 мкм. В эукариотической клетке носители генов - хромосомы - находятся в морфологически оформленном ядре, отграниченном от остальной клетки мембраной. В исключительно тонких, прозрачных препаратах живые хромосомы можно видеть с помощью светового микроскопа. Чаще же их изучают на фиксированных и окрашенных препаратах.Эукариотическая клетка имеет разнообразные постоянные внутриклеточные структуры - органоиды (органеллы), отсутствующие в прокариотической клетке.Прокариотические клетки могут делиться на равные части перетяжкой или почковаться, т.е. образовывать дочернюю клетку меньшего размера, чем материнская, но никогда не делятся путем митоза. Клетки эукариотических организмов, напротив, делятся путем митоза(исключая некоторые очень архаичные группы). Рибосомы прокариотической клетки резко отличаются от рибосом эукариот по величине. Ряд процессов, свойственных цитоплазме многих эукариотических клеток, - фагоцитоз, пиноцитоз и циклоз (вращательное движение цитоплазмы) - у прокариот не обнаружен. Прокариотической клетке в процессе обмена веществ не требуется аскорбиновая кислота, но эукариотические не могут без нее обходиться. Прокариоты имеют двигательные приспособления в виде жгутиковили ресничек, состоящих из белка флагеллина. Двигательные приспособления подвижных эукариотических клеток получили название ундулиподиев, закрепляющихся в клетке с помощью особых телец кинетосом. Электронная микроскопия выявила структурное сходство всех ундулиподиев эукариотических организмов и резкие их отличия от жгутиков прокариот.

№9Ассимиляция и диссимиляция как основа самообновления биологических систем. Клетка — целостная система. Примеры процессов ассимиляции и диссимиляции в клетке и их взаимосвязь

В клетке обнаружены примерно тысяча ферментов. С помощью такого мощного каталитического аппарата осуществляется сложнейшая и многообразная химическая деятельность. Из громадного числа химических реакций клетки выделяются два противоположных типа реакций - синтез и расщепление.

Реакция синтеза. В клетке постоянно идут процессы созидания. Из простых веществ образуются более сложные, из низкомолекулярных - высокомолекулярные. Синтезируются белки, сложные углеводы, жиры, нуклеиновые кислоты. Синтезированные вещества используются для построения разных частей клетки, ее органоидов, секретов, ферментов, запасных веществ. Синтетические реакции особенно интенсивно идут в растущей клетке, постоянно происходит синтез веществ для замены молекул, израсходованных или разрушенных при повреждении. На место каждой разрушенной молекулы белка или какого-нибудь другого вещества встает новая молекула. Таким путем клетка сохраняет постоянными свою форму и химический состав, несмотря на непрерывное их изменение в процессе жизнедеятельности.

Синтез веществ, идущий в клетке, называют биологическим синтезом или сокращенно биосинтезом. Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией (лат. "симилис"- сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО2и Н2О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называют обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

№10 Жизненный и митотический циклы клетки. Характеристика периодов. Митоз, его биологич значение. Проблемы клеточной пролиферации в медицине.

Жизненный цикл клетки (клеточный цикл) - последовательность всех процессов, происходящих в клетке с момента её возникновения в результате митоза до следующего деления или гибели.Митотический цикл клетки - период жизни клетки от одного деления до другого.

Клеточный цикл эукариот состоит из двух периодов: 1) Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки: G1-фазы или фазы начального роста, во время которой идет синтез мРНК, белков, других клеточных компонентов; S-фазы, во время которой идет репликация ДНК клеточного ядра, также происходит удвоение центриолей (если они, конечно, есть). G2-фазы, во время которой идет подготовка к митозу.У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G1 фаза. Такие клетки находятся в фазе покоя G0.

2) Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз): кариокинез (деление клеточного ядра); цитокинез(деление цитоплазмы).

В свою очередь, митоз делится на пять стадий.

Митоз - непрямое деление, основной способ деления эукариотных клеток. Биол. значение митоза состоит в строго одинаковом распределении редуплицированных хромосом между дочерними клетками, что обеспечивает образование генетически равноценных клеток и сохраняет преемственность в ряду клеточных поколений. В процессе митоза условно выделяют неск. стадий, постепенно и непрерывно переходящих друг в друга: профазу, прометафазу, метафазу, анафазу и телофазу. Длительность стадий митоза различна и зависит от типа ткани, физиол. состояния организма, внеш. факторов; наиб, продолжительны первая и последняя. Важнейшие признаки профазы — конденсация хромосом, распад ядрышек и начало формирования веретена деления, снижение активности транскрипции (к концу профазы синтез РНК прекращается). Прометафаза начинается распадом ядерной оболочки на фрагменты и беспорядочными движениями хромосом в центр, части клетки, соответствующей зоне бывшего ядра. В метафазе завершается формирование веретена деления. Хромосомы перестают двигаться и выстраиваются по экватору веретена, образуя экваториальную пластинку. Анафаз а— самая короткая стадия митоза: разделение сестринских хроматид и расхождение хромосом к противоположным полюсам клетки. Телофаза длится с момента прекращения движения хромосом до окончания процессов, связанных с реконструкцией дочерних ядер (десприрализация и активизация хромосом, образование ядерной оболочки, формирование ядрышек), с разрушением веретена деления, разделением тела материнской клетки на 2 дочерние и образованием (в клетках животных) остаточного тельца флемминга. По завершении цитотомии клетки вступают в интерфазу, которая начинается G1-периодом следующего клеточного цикла.

№11 Мейоз. Особенности первого и второго деления мейоза. Биолгич. значение меоза. Отличия мейоза от митоза.

Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление).Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

1) Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

- Лептотена или лептонема — упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

- Зиготена или зигонема — происходит конъюгация— соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

- Пахитена или пахинема — (самая длительная стадия) — в некоторых местах гомологичные хромосомы плотно соединяются, образуяхиазмы. В них происходит кроссинговер— обмен участками между гомологичными хромосомами.

- Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

- Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой. К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

2) Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки; 3) Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе; 4) Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

1) Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления; 2) Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку; 3) Анафаза II — униваленты делятся и хроматидырасходятся к полюсам; 4) Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.
Отличия:

1). мейоз уменьшает вдвое число хромосом в дочерних клетках, митоз поддерживает число хромосом на стабильном уровне, как и в материнской клетке;

2. в мейозе следуют 2 подряд деления, причем перед вторым-нет интерфазы
3. в профазе 1 мейоза есть конъюгация и возможен кроссинговер
4. в анафазе 1 мейоза к полюсам расходятся целые хромосомы. при митозе-хроматиды
5. в метафазе 1 мейоза вдоль экватора клетки выстраиваются биваленты хромосом, в митозе все хромосомы выстраиваются в одну линию
6. в результате мейоза образуется 4 дочерних клетки, в митозе-2 клетки.

№12 Прогенез. Смертагенез. Цитологическая и цитогенетическая характеристика процесса. Строение семенника млекопитающего. Сперматозоид. Взаимосвязь строения и функции.

Прогенез – развитие и созревание половых клеток (гаметогенез (спермато– и овогенез) и оплодотворение).

Сперматогене́з — развитие мужских половых клеток (сперматозоидов), происходящее под регулирующим воздействием гормонов. Одна из форм гаметогенеза. Сперматогенез осуществляется в извитых канальцах семенников и подразделяется на четыре периода:

1) период размножения – I;

2) период роста – II;

3) период созревания – III;

4) период формирования – IV.

У позвоночных животных сперматогенез проходит по следующей схеме: в эмбриогенезе первичные половые клетки- гоноциты мигрируют в зачаток гонады, где формируют популяцию клеток, называемых сперматогониями. С началом полового созревания сперматогонии начинают активно размножаться, часть из них дифференцируется в другой клеточный тип — сперматоциты I порядка, которые вступают в мейоз и после первого деления мейоза дают популяцию клеток, называемых сперматоцитами II порядка, проходящих впоследствии второе деление мейоза и образующих сперматиды; путём ряда преобразований последние приобретают форму и структуры сперматозоида в ходе спермиогенеза.

Семенники покрыты оболочкой, состоящей из мезотелия и белочной оболочки. От последней в глубь органа отходят радиальные соединительнотканные перегородки, подразделяющие семенник на отдельные дольки, заполненные извитыми семенными канальцами. Извитые семенные канальцы заканчиваются прямыми канальцами, которые продолжаются в сеть семенника. От последней берут начало выносящие канальцы, которые переходят в канал придатка семенника. Канал придатка семенника дает начало семяпроводу, который открывается в мочеполовой канал. Стенка извитых семенных канальцев состоит из тонкой основы и крупных поддерживающих клеток, называемых клетками Сертоли, а также из мужских половых клеток, находящихся на различных стадиях развития. Клетки Сертоли одним своим концом располагаются на соединительнотканной основе извитого семенного канальца, а другим образуют его просвет. Мужские половые клетки вдавлены в клетки Сертоли, причем последние выполняют по отношению к ним трофические функции. Половые клетки располагаются в стенке извитого семенного канальца в несколько слоев: самые молодые — сперматогонии — располагаются по периферии, в зоне локализации ядер клеток Сертоли, а сформированные мужские половые клетки, или сперматозоиды, — в центре канальца.

Сперматозоид — мужская половая клетка, мужскаягамета, которая служит для оплодотворения женской гаметы, яйцеклетки.

Сперматозоид человека — это специализированная клетка, строение которой позволяет ей выполнить свою функцию: преодолеть половые пути женщины и проникнуть в яйцеклетку, чтобы внести в неё генетический материал мужчины. Сперматозоид, сливаясь с яйцеклеткой, оплодотворяет её.

Сперматозоид человека состоит из двух основных частей: головки и хвоста.

Головка содержит:

1) ядро (с гаплоидным набором хромосом);

2) чехлик;

3) акросому;

4) тонкий слой цитоплазмы, окруженный цитолеммой.

Хвост сперматозоида подразделяется на:

1) связующий отдел;

2) промежуточный отдел;

3) главный отдел;

4) терминальный отдел.

Главные функции сперматозоида – хранение и передача яйцеклеткам генетической информации при их оплодотворении. Оплодотворяющая способность сперматозоидов в половых путях женщины сохраняется до 2 суток.

№13 Прогенез. Овогенез. Цитологическая и цитогенетическая характеристика процесса. Строение яичника млекопитающего. Типы яйцеклеток. Взаимосвязь строения и функции.

Оогенез или овогенез — развитие женской половой клетки — яйцеклетки (яйца).Во время эмбрионального развития организма гоноциты вселяются в зачаток женской половой гонады (яичника), и всё дальнейшее развитие женских половых клеток происходит в ней. Попав в яичник, гоноцитыстановятся оогониями. Оогонии осуществляют период размножения. В этот период оогонии делятся митотическим путем. У позвоночныхживотных (в том числе у человека) этот процесс происходит только в период эмбрионального развития самки.

Овогенез осуществляется в яичниках и подразделяется на три периода:

1) период размножения (в эмбриогенезе и в течение 1-го года постэмбрионального развития);

2) период роста (малого и большого);

3) период созревания.

Яичники покрыты однослойным однорядным кубическим эпителием, который представляет собой продолжение на яичник мезотелия брюшины. Под эпителием располагается соединительнотканная белочная оболочка. В яичнике различают внутренний, или мозговой, слой, богатый кровеносными сосудами и нервами, и наружный, или корковый, слой, в котором располагается очень много женских половых клеток — ооцитов, или овоцитов, находящихся на стадии роста. Ооциты окружены одним или несколькими слоями фолликулярных клеток, которые входят в состав их вторичной оболочки. Ооциты вместе с окружающими их фолликулярными клетками называются фолликулами. Фолликулярные клетки выполняют трофическую функцию. Начиная с периода половой зрелости в яичнике происходит рост половых клеток.

Яйцеклетка - женская половая клетка, которая в результате оплодотворения ее сперматозоидом или реже путем партеногенеза (без оплодотворения) дает начало зародышу; cостоит из ядра с гаплоидным набором хромосом и выраженной цитоплазмы, в которой содержатся все органеллы, за исключением цитоцентра.

Оболочки яйцеклетки:

1) первичная (плазмолемма);

2) вторичная – блестящая оболочка;

3) третичная – лучистый венец (слой фолликулярных клеток).

Классификация яйцеклеток:

1) По количеству желтка

- Полилецитальные — содержат большое количество желтка (членистоногие, рептилии, птицы, рыбы, кроме осетровых).

- Мезолецитальные — содержат среднее количество желтка (осетровые рыбы, амфибии).

- Олиголецитальные — содержат мало желтка (моллюски, иглокожие)

- Алецитальные — не содержат желтка (млекопитающие, некоторые паразитические перепончатокрылые).

2) По расположению желтка

- Телолецитальные — желток смещён к вегетативному полюсу яйцеклетки. Противоположный полюс называется анимальным. Сюда относятся некоторые полилецитальные (рыбы, кроме осетровых, рептилии, птицы) и все мезолецитальные яйца (осетровые рыбы, амфибии).

- Гомо (изо)- лецитальные — желток распределён равномерно. Сюда относятся олиголецитальные ядра (моллюски, иглокожие).

- Центролецитальные — желток расположен в центре яйцеклетки. Сюда относятся некоторые полилецитальные яйца (членистоногие). Это совершенно особый тип яиц. Анимально-вегетативная полярность этих яиц не выражена, так как место выделения 1редукционных телец может быть различным. Вместо анимального и вегетативного полюсов у этих яиц говорят о переднем и заднем полюсах. В центре яйца расположено ядро, а по периферии — ободок свободной от желтка цитоплазмы. Оба этих района — центр и периферия яйца — связаны тонкими цитоплазматическими мостиками, а всё промежуточное пространство заполнено желтком.

 

 

№14 Размножение — основное свойство живого. Виды размножения. Партеногенез. Формы партеногенеза в природе. Примеры.

Размножение, или репродукция, присущая всем живым существам функция воспроизведения себе подобных. Существует два типа размножения: половое и бесполое.
Бесполое размножение, или агамогенез — форма размножения, при которой организм воспроизводит себя самостоятельно, без всякого участия другой особи. Формы бесполого размножения:
1. Почкование
2. Фрагментация
3. Образование спор
4. Деление.
5. Шизогония
6. Вегетативное размножение.

Половое размножение — процесс у большинства эукариот, связанный с развитием новых организмов из половых клеток. Виды полового размножения

1) Конъюгация.
2) Партеногенез.

3) Гермафродитизм
Партеногенез – это процесс, при котором женская гамета развивается в новую особь без оплодотворения (встречается у животных (пчёлы) и растений). Виды партеногенеза:

1)облигатный (обязательный) партеногенез. Встречается в популяциях, состоящих исключительно из особей женского пола (у кавказской скалистой ящерицы). При этом вероятность встречи разнополых особей минимальна (скалы разделены глубокими ущельями). Без партеногенеза вся популяция оказалась бы на грани вымирания;

2)циклический (сезонный) партеногенез (у тлей, дафний, коловраток). Встречается в популяциях, которые исторически вымирали в больших количествах в определенное время года. У этих видов партеногенез сочетается с половым размножением. При этом в летнее время существуют только самки, которые откладывают два вида яиц — крупные и мелкие. Из крупных яиц партеногенетически появляются самки, а из мелких — самцы, которые оплодотворяют яйца, лежащие зимой на дне. Из них появляются исключительно самки; факультативный (необязательный) партеногенез. Встречается у общественных насекомых (ос, пчел, муравьев). В популяции пчел из оплодотворенных яиц выходят самки (рабочие пчелы и царицы), из неоплодотворенных — самцы (трутни). У этих видов партеногенез существует для регулирования численного соотношения полов в популяции.

Выделяют также естественный (существует в естественных популяциях) и искусственный (используется человеком) партеногенез. Этот вид партеногенеза исследовал В. Н. Тихомиров. Он добился развития неоплодотворенных яиц тутового шелкопряда, раздражая их тонкой кисточкой или погружая на несколько секунд в серную кислоту (известно, что шелковую нить дают только самки).

- Гиногенез (у костистых рыб и некоторых земноводных). Сперматозоид проникает в яйцеклетку и лишь стимулирует ее развитие. Ядро сперматозоида при этом с ядром яйцеклетки не сливается и погибает, а источником наследственного материала для развития потомка служит ДНК ядра яйцеклетки.

- Андрогенез.В развитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.

- Полиэмбриония. Зигота делится на несколько частей бесполым способом, каждая из которых развивается в самостоятельный организм. Встречается у насекомых (наездников), броненосцев.

Значение партеногенеза:

1)размножение возможно при редких контактах разнополых особей;

2)резко возрастает численность популяции, так как потомство, как правило, многочисленно;

3)стречается в популяциях с высокой смертностью в течение одного сезона.

№15 Размножение — основное свойство живых систем. Виды размножения. Формы бесполого размножения. Характеристика и биологическое значение бесполого размножения.

Размножение, или репродукция, присущая всем живым существам функция воспроизведения себе подобных. Существует два типа размножения: половое и бесполое.

Бесполое размножение, или агамогенез — форма размножения, при которой организм воспроизводит себя самостоятельно, без всякого участия другой особи. Единственным источником генетической изменчивости являются случайные мутации. Цитологической основой бесполого размножения является митоз. Молекулярной основой бесполого размножения является репликация ДНК. Бесполое размножение у различных живых организмов может происходить по-разному. Формы бесполого размножения:

1. Почкование – это форма бесполого размножения при которой новая особь образуется в виде выростов (почки) на теле родительской особи, а затем отделяется от неё и превращается в самостоятельную особь (гидра, дрожжи).
2. Фрагментация – это разделение особи на две или более частей, каждая из которых растёт и образуется отдельная особь (высшие растения, губка, дождевой червь).
3. Образование спор. Спора – это одноклеточная репродуктивная единица, состоящая из ядра и небольшого количества цитоплазмы под плотной оболочкой. Из споры образуется новая особь (низшие растения).
4. Деление. Бинарное деление клетки на две части. Ядро родительской особи один или несколько раз делится митозом, при этом образуется два или несколько дочерних ядер. Каждое из них окружается цитоплазмой и развивается в самостоятельный организм.
5. Шизогония – это множественное деление клетки. Сначала в клетке многократно делится ядро, затем вокруг каждого ядра обособляется участок цитоплазмы, который окружается плазматической мембраной. Затем происходит распад на отдельные клетки (малярийный плазмодий).

6. Вегетативное размножение. Осуществляется формирование дочернего организма из группы клеток материнского организма. У растений это размножение происходит за счёт вегетативных органов: корневищ, луковиц, клубней, усов.

В результате бесполого размножения образуются генетически идентичные особи. Скорость размножения очень высокая и в постоянных условиях организма быстро захватывают экологическую нишу.

Бесполое размножение наблюдается у бактерий, водорослей, грибов, мхов и сосудистых растений, а среди животных – у простейших, кишечнополостных, оболочников и некоторых других. Существует несколько его типов. Так, одноклеточные организмы размножаются путём деления; грибы и споровые растения – с помощьюспор; вегетативное размножение (почкование) присуще дрожжам, губкам, кишечнополостным, червям, оболочникам. Бесполое размножение у многих видов сочетается с половым размножением. Поколения особей, размножающихся бесполым путём, могут сменяться поколениями, которые размножаются половым путём, т.е. происходит чередование поколений.

Плазмиды - факторы наследственности, расположенные в клетках вне хромосом; молекулы ДНК, способные к автономному размножению. Наиболее изучены бактериальные плазмиды (колициногенные, половые факторы, факторы лекарственной устойчивости и др.). Широко используются в генетической инженерии как переносчики генетического материала.

Эписомы — генетические элементы бактерий, способные существовать как в интегрированном в бактериальные хромосомы состоянии, так и в виде автономных плазмид. Свойствами эписом обладают также геномы некоторых вирусов — умеренных бактериофагов (например, фаг лямбда), способные интегрироваться в геном бактерии-хозяина и существовать в виде профага, реплицирующегося вместе с бактериальной ДНК в качестве одного из «молчащих» бактериальных генов при делении клетки, и в автономном состоянии.

№16 Размножение — основное свойство живых систем. Виды размножения. Формы полового размножения. Характеристика и биологическое значение полового размножения. Понятие полового диморфизма.

Размножение, или репродукция, присущая всем живым существам функция воспроизведения себе подобных. Существует два типа размножения: половое и бесполое.

Половое размножение — процесс у большинства эукариот, связанный с развитием новых организмов из половых клеток. Виды полового размножения:

1) Конъюгация. Половое размножение появляется у животных уже на самых низших ступенях эволюционной лестницы. Так, уже у простейших одноклеточных микроорганизмов – инфузорий, размножающихся прямым делением, наблюдается так называемая конъюгация, в процессе которой две инфузории как бы срастаются на время и обмениваются наследственной информацией. Затем инфузории разъединяются, и каждая продолжает делиться сама по себе.

2) Гермафродитизм. У целого ряда беспозвоночных животных – дождевых червей, пиявок и многих видов улиток – имеет место гермафродитизм, при котором у каждой особи имеются как мужские, так и женские половые железы. Однако, несмотря на это, каждая особь стремится к спариванию с другими, предпочтительно не родственными особями, производя взаимный обмен половыми клетками. У крупных, не имеющих раковин моллюсков аплизий, или морских кроликов, обитающих в прибрежной зоне моря, в процессе оплодотворения может одновременно принимать участие до 10-12 особей, играя сразу как роли самцов, так и самок.

3) Партеногенез - то процесс, при котором женская гамета развивается в новую особь без оплодотворения (встречается у животных (пчёлы) и растений).

Сущность полового размножения в перекомбинации генетического материала родительских особей. В результате дочерние особи становятся более разнообразными, и естественный отбор выбирает из них наиболее приспособленные. При половом размножении потомство получается в результате слияния гаплоидных клеток – гамет. При оплодотворении образуется зигота. Из которой развивается новый организм.
Оплодотворение – это процесс слияния сперматозоида с яйцеклеткой с последующим слиянием их ядер и образованием диплоидной зиготы. Биологическое значение этого процесса состоит в том, что при слиянии мужских и женских гамет образуется новый организм, несущий признак обоих родительских организмов. Гаметы гаплоидны, они содержат половинный набор хромосом и образуются в результате мейоза.

Половой диморфизм — анатомические различия между самцами и самками одного и того же биологического вида, исключая различия в строении половых органов. Половой диморфизм может проявляться в различных физических признаках.В некоторых случаях половой диморфизм проявляется в развитии таких признаков, которые явно вредны для их обладателей и снижают их жизнеспособность.

1) Размер. У млекопитающих и многих видов птиц самцы более крупные и тяжёлые, чем самки. У земноводных и членистоногих самки, как правило, крупнее самцов.

2) Волосяной покров. Борода у мужчин, грива у львов или бабуинов.

3) Окраска. Цвет оперения у птиц, особенно у утиных.

4) Кожа. Характерные наросты или дополнительные образования, такие как рога у оленевых, гребешок у петухов.

5) Зубы. Бивни у самцов индийского слона, более крупные клыки у самцов моржей и кабанов.

№17 Пути приобретения организмами биологической информации. Генетическая рекомбинация. Явление трансдукции. Плазмиды и эписомы.

Благодаря генетической рекомбинации, которая закономерно происходит в процессе гаметогенеза и при оплодотворении, половое размножение представляет собой эволюционно обусловленный механизм обмена генетической информацией между организмами одного биологического вида. Некоторые факты из области зоологии и особенно вирусологии и микробиологии указывают и на то, что имеются пути приобретения биологической информации и от организмов других видов. Эта информация воспроизводится в фенотипе организма и определяет развитие признаков, не закодированных в генетическом материале родителей. Так, в клетках пищеварительного дивертикула брюхоногого моллюска Elysia viridis сохраняются хлоропласты поедаемой водоросли Codium bragile, в результате чего моллюск приобретает способность к фотосинтезу. Стрекательные капсулы гидроидных полипов, которые поедаются некоторыми реснитчатыми червями, не перевариваются, а перемещаются в эпителиальный пласт и используются червем в качестве орудия защиты. В классической зоологии такие примеры получили название клептогенеза или эволюции путем воровства.

Рекомбинация — процесс обмена генетическим материалом путем разрыва и соединения разных молекул. Важное значение для поддержания жизнеспособности вида имеет существование гаплоидной фазы в жизненном цикле. У высших животных эта фаза ограничена гаметами. В гаплоидной стадии новые комбинации генов подвергаются проверке на жизнеспособность, по крайней мере в отношении базовых клеточных функций, которые связаны с обеспечением жизнедеятельности самих гамет. На одной из стадий мейоза пары гомологичных хромосом соединяются друг с другом. В это время между отцовской и материнской молекулами ДНК происходит интенсивный обмен информацией. Несколько огрубляя реальную ситуацию, можно сказать, что последовательности нуклеотидов в двух гомологичных молекулах ДНК обмениваются между собой случайным образом, и в результате образуются две молекулы ДНК, состоящие каждая на 50% из последовательностей обоих родителей, сменяющих друг друга случайным образом. В действительности обмены могут быть распределены по хромосоме неравномерно (горячие точки рекомбинации) и не совсем случайно (интерференция и отрицательная интерференция обменов, стимуляция рекомбинации в местах, где гомологичные хромосомы не идентичны).

Явление трансдукции заключается в том, что в генетический материал клетки-хозяина (бактериальной или эукариотической) встраивается нуклеиновая кислота вируса с фрагментом генома другой клетки. Привносимая таким образом биологическая информация вследствие редупликации чужеродной ДНК может передаваться в ряду клеточных поколений, а также воздействовать на состояние генетической системы клетки-хозяина, изменяя, например, частоту мутирования отдельных генов. Чужеродная ДНК может присутствовать в клетке в виде плазмид и эписом — фрагментов нуклеиновой кислоты, лишенных в отличие от вирусных частиц белковых чехлов. Плазмиды самостоятельны по отношению к хромосомам клетки-хозяина, а эписомы могут встраиваться в них. Биологическая информация плазмид и эписом, проявляясь в фенотипе, дает широкий круг признаков, включая устойчивость к антибиотикам.

№18 История развития представлений о наследственности и изменчивости. Наследственности и изменчивость — фундаментальные свойства живого.
Наследственность и изменчивость как важнейшие свойства любой живой системы обеспечиваются функционированием особого материального субстрата. В ходе исторического развития биологической науки представления о его свойствах, организации и химической природе постоянно расширяются и усложняются.
В 60-х гг. XIX в. основоположник генетики (науки о наследственности и изменчивости) Г. Мендель (1865) высказал первые предположения об организации наследственного материала. На основании результатов экспериментов на горохе он пришел к выводу, что наследственный материал дискретен, т.е. представлен отдельными наследственными задатками, отвечающими за развитие определенных признаков организмов. По утверждению Менделя, в наследственном материале организмов, размножающихся половым путем, развитие отдельного признака обеспечивается парой аллельных задатков, пришедших с половыми клетками от обоих родителей. При образовании гамет в каждую из них попадает лишь один из пары аллельных задатков, поэтому гаметы всегда «чисты». В 1909 г. В. Иогансен назвал «наследственные задатки» Менделя генами.
80-е гг. XIX в. ознаменовались важными достижениями в области цитологии: были описаны митоз и мейоз — деление соответственно соматических и половых клеток, в ходе которых закономерно между дочерними клетками распределяются ядерные структуры —хромосомы (В. Вольдейер, 1888).
Данные о характере распределения хромосом в процессе клеточного деления позволили в начале XX в. Т. Бовери (1902—1907) и У. Сетгону (1902—1903) сделать вывод о том, что преемственность свойств в ряду поколений клеток и организмов определяется преемственностью их хромосом. Хромосомы стали рассматривать как материальные носители наследственной программы.
В начале XX в. Т. Морганом (в опытах, выполненных на дрозофиле) установлено, что гены размещаются в хромосомах, располагаясь в них в линейном порядке. Гены каждой хромосомы образуют группу сцепления, число которых определяется количеством хромосом в половых клетках. Гены одной группы сцепления наследуются, как правило, совместно. Однако в ряде случаев происходит их перекомбинация в связи с кроссинговером, частота которого зависит от расстояния между генами.
Таким образом, в хромосомной теории нашел отражение один из важнейших принципов генетики — единство дискретности и непрерывности наследственного материала.
X. де Фризом (1901) были заложены основы учения о мутационной изменчивости, связанной с внезапно возникающими изменениями в наследственных задатках или хромосомах, что приводит к изменениям тех или иных признаков организма.
В результате этих исследований стало очевидным, что наследственность и изменчивость обусловлены функционированием одного и того же материального субстрата.
В первые десятилетия XX в. были получены данные, свидетельствующие в пользу зависимости состояния признаков от характера взаимодействия генов, что выходило

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...