Глава 1. Старые истины на новый лад
Суждения
«Некоторые свежие булочки вкусные». «Ни одна свежая булочка не вкусная». «Все свежие булочки вкусные». Перед вами три суждения — только такие три типа суждений мы и будем использовать в этой игре. Первое, что необходимо сделать, — это научиться изображать их на нашей диаграмме. Начнём с рассуждения «Некоторые свежие булочки вкусные», но прежде сделаем одно замечание. Оно необычайно важно и понять его сразу не так-то просто, поэтому читать его надо очень внимательно. В окружающем нас мире имеется много предметов (таких, как «берёзки», «бараны», «бациллы», «быки» и т. д.). Предметы эти обладают множеством признаков (таких, как, например, «белые», «бестолковые», «болезнетворные», «бодливые» и т. п.; в действительности любое свойство, которое «признано» за предметом, или, как ещё говорят, «принадлежит ему», может служить его признаком). Если нам нужно назвать предмет, мы употребляем существительное. Если же нужно назвать какой-нибудь признак, мы употребляем прилагательное. Наверное, найдутся люди, которым захочется спросить: «Может ли существовать предмет, не обладающий никакими признаками?» Это очень трудный вопрос, и я даже не буду пытаться ответить на него. Мы просто гордо отвернёмся и будем хранить презрительное молчание, делая вид, будто он не достоин нашего внимания. Но если вопрос поставлен иначе и люди хотят знать, могут ли существовать признаки, не принадлежащие никаким предметам, то мы сразу же сможем ответить: «Нет, как не могут грудные младенцы самостоятельно совершать поездки по железной дороге!» Ведь не приходилось же вам никогда видеть, как «блестящее» плавает в воздухе или рассыпано по полу, без того, чтобы хоть какой-нибудь предмет не был блестящим?
К чем я веду весь этот длинный (и довольно бессвязный) разговор? А вот к чему. Между именами двух предметов или между именами двух предметов или между именами двух признаков можно вставить слово «есть» или «суть»[1] (или подразумевать, что такое слово вставлено), и при этом результат получится вполне осмысленным. Например, «некоторые свиньи суть жирные животные» или «розовый — это светло-красный». Но если вы вставите слово «есть» или «суть» между именем предмета и именем признака (например, «некоторые свиньи суть розовые»), то ничего хорошего из этого не получится (ибо как может предмет быть признаком?), если тот, с кем вы говорите, не знает заранее, что вы имеете в виду. Мне кажется, что добиться взаимопонимания было бы проще всего, если бы мы условились повторять существительное в конце предложения. В этом случае предложение, если его записать полностью, имело бы вид: «Некоторые свиньи суть розовые (свиньи)». Никаких противоречий при этом не возникает. Итак, чтобы суждение «Некоторые свежие булочки вкусные» имело смысл, необходимо предположить, что оно записано в развёрнутом виде: «Некоторые свежие булочки суть вкусные (булочки)». Полное суждение содержит два термина: один из них — «некоторые булочки», другой — «вкусные булочки». Термин «некоторые булочки», о котором идёт речь, называется субъектом суждения, термин «вкусные булочки» — предикатом суждения. Наше суждение частное, поскольку в нем говорится не о в всем субъекте, а лишь о его части. Суждения «Ни одна свежая булочка не вкусная» и «Все свежие булочки вкусные» называются общими, поскольку в каждом из них речь идёт обо всем предикате: в первом из них отрицается а во втором утверждается «вкуснота» всего класса «свежих булочек». Наконец, если вы захотите узнать, что же такое суждение, то мы можем предложить вам следующее определение: «Суждение — это предложение, утверждающее, что некоторые или все предметы, принадлежащие определённому классу, называемому субъектом, одновременно являются предметами, принадлежащими другому классу, называемому предикатом» (или что ни один предмет, принадлежащий классу «субъект», не является предметом, принадлежащим классу «предикат»).
Эти девять слов — суждение, признак, термин, суждения, субъект, предикат, частное и общее суждение — окажутся необычайно полезными, если кому-нибудь из ваших приятелей придёт в голову поинтересоваться, не приходилось ли вам когда-нибудь изучать логику. Не забудьте употребить в своём ответе все девять слов, и ваш приятель удалится совершенно потрясённым, «став не только мудрее, но и печальнее». Взгляните теперь на меньшую диаграмму (с. 9). Предположим, что она нарисована на подносе, который вмещает все булочки в мире (разумеется, размеры его должны быть достаточно велики). Пусть все свежие булочки находятся на верхней половине диаграммы (помеченной буквой x), а все остальные (т. е. не свежие) — на нижней (помеченной буквой x'). На нижней половине окажутся чёрствые булочки, окаменевшие булочки, допотопные булочки (если таковые существуют — лично мне их видеть не приходилось) и т. д. Сделаем ещё одно предположение: будем считать, что все вкусные булочки находятся на левой половине диаграммы (помеченной буквой y), а все прочие (т. е. не вкусные) булочки — на правой половине (помеченной буквой y'). Таким образом, x временно означает «свежие», x' — «несвежие», y — «вкусные» и y' — «невкусные». Как вы думаете, какие булочки находятся в клетке 5? Вы видите, что эта клетка расположена в верхней половине диаграммы. Следовательно, если в ней есть хоть какие-нибудь булочки, то они должны быть свежими. В то же время клетка 5 расположена в левой половине диаграммы; следовательно, принадлежащие ей булочки должны быть вкусными. Таким образом, если мы воспользуемся буквенными обозначениями, «быть xy». Обратите внимание, что буквы x и y написаны на двух сторонах клетки 5. Как вы увидите в дальнейшем, это позволяет необычайно просто узнавать, какими признаками обладают предметы, находящиеся в любой из клеток. Возьмём, например, клетку 7. Если в ней есть булочки, то они должны быть x'y, т. е. «несвежие и вкусные».
Примем теперь ещё одно соглашение: будем считать, что клетка «занята», т. е. в ней находятся некоторые булочки, если на ней стоит красная фишка. Слово «некоторые» в логике означает «одна или несколько», поэтому одной-единственной булочки в клетке совершенно достаточно для того, чтобы мы могли сказать: «В этой клетке находятся некоторые булочки». Условимся также считать, что чёрная фишка, стоящая в какой-нибудь клетке, означает, что эта клетка «пуста», т. е. в ней нет ни одной булочки. Поскольку субъектом нашего суждения служат «свежие булочки», мы временно будем рассматривать только верхнюю половину подноса, где находятся все булочки, обладающие признаком x, т. е. «свежие». Предположим, что, сосредоточив внимание на верхней половине диаграммы, мы обнаружили, что она размечена следующим образом: т. е. красная фишка стоит на клетке 5. Что можно сказать в этом случае о классе «свежих булочек»? А то, что некоторые из них находятся в клетке xy, т. е. помимо признака x, общего для двух верхних клеток, обладают ещё и признаком y (т. е. «свежие»). Иначе говоря, мы получили суждение «Некоторые x- булочки суть y (булочки)», или, если подставить вместо x и y их значения, «Некоторые свежие булочки суть вкусные (булочки)». Кратко то же самое можно выразить так: «Некоторые свежие булочки вкусные». Наконец-то мы узнали, как изображается на диаграмме первое из суждений, приведённых в самом начале этого параграфа! Если вы недостаточно уяснили то, о чем я говорил до сих пор, вам лучше не продолжать чтения, а вернуться назад и перечитать этот параграф ещё несколько раз — до тех пор, пока вы не разберётесь во всем до конца. Зато, как только вы усвоите эту часть, все остальное не вызовет у вас никаких затруднений. Рассмотрение двух других суждений будет несколько проще, если мы условимся вообще опускать слово «булочки». Я нахожу, что весь класс предметов, для которых предназначается поднос с начерченной на нем диаграммой, удобно называть «Универсум», или «Мир». Чтобы испробовать новый термин, скажем, например: «Рассмотрим Мир булочек». (Звучит хорошо, не правда ли?)
Разумеется, мы можем брать не только булочки, но и другие предметы и высказывать суждения о «Мире ящериц» или даже о «Мире ос-шершней». (Вы, конечно, согласны, что последний «Мир» просто очарователен и жить в нем — одно удовольствие?) Вернёмся к нашей диаграмме. Мы уже знаем, что означает «Некоторые x суть y», т. е. «Некоторые свежие суть вкусные». Разумеется, вы сразу, без всяких объяснений, догадаетесь (я просто уверен в этом), что означает «Некоторые x суть y'», т. е. «Некоторые свежие суть невкусные». Поставим теперь на клетку 5 чёрную фишку и спросим себя, что означает
Мы видим, что клетка xy пуста. Следовательно, нуль в клетке 5 соответствует суждению «Ни один x не есть y», или «Ни одна свежая булочка не вкусная», а это не что иное, как второе из трёх суждений, приведённых в начале параграфа. Точно так же диаграмма означает «Ни один x не есть y'», или «Ни одна свежая булочка не невкусная». А как перевести на обычный язык такую диаграмму
Думаю, что вы и без моей помощи разберётесь, что с её помощью записано двойное суждение: «Некоторые x суть y, и некоторые x суть y'», т. е. «Некоторые свежие (булочки) вкусны, а некоторые свежие (булочки) невкусные». Может быть, диаграмма вам покажется более сложной. Она означает, что «Ни один x не есть y, и ни один x не есть y'», т. е. «Ни одна свежая (булочка) не вкусная, и ни одна свежая (булочка) не невкусная». Отсюда следует весьма любопытное заключение: «Ни одна свежая булочка не существует», т. е. «Ни одна булочка не свежая». Оно связано с тем, что разбиение класса «свежих булочек» на «вкусные» и «невкусные» булочки, если взять их вместе, исчерпывают весь класс «свежих булочек». Иначе говоря, все свежие булочки, которые только существуют, должны принадлежать либо множеству «вкусных булочек», либо множеству «невкусных булочек». Предположим, что вам необходимо изобразить на диаграмме с помощью фишек суждение, противоположное суждению «Ни одна булочка не свежая», т. е. суждение «Некоторые булочки свежие» (или, если воспользоваться уже употреблявшимися буквенными обозначениями, «Некоторые булочки суть x»). Как это сделать? Подобная задача вряд ли поставит вас в тупик. Ясно, что красную фишку нужно поставить куда-то на x- половину подноса, поскольку известно, что имеется некоторое количество свежих булочек. Поставить красную фишку на левую клетку нельзя, поскольку вы не можете с уверенностью сказать, что эти булочки вкусные. Точно так же нельзя поставить красную фишку и на правую клетку: ведь ни откуда не следует, что эти булочки невкусные.
Что же делать? Мне кажется, что лучший выход из создавшегося затруднительного положения — поставить красную фишку на линию, отделяющую клетку xy от клетки xy'. Эту ситуацию я буду изображать на диаграмме так:
Наши остроумные американские кузины говорят о человеке, который хочет вступить в одну из двух партий, таких, как их партии «демократов» и «республиканцев», но никак не может решить какую именно ему выбрать, что он «сидит на стенке». Это выражение как нельзя лучше подходит к красной фишке, которую вы только что поставили на разделительную линию: ей нравится и клетка 5, и клетка 6, но она не может решиться, в какую из них спрыгнуть. Так и сидит себе, глупышка, верхом на стенке и болтает от нечего делать ногами! А теперь я хочу предложить вам гораздо более трудную задачу. Как, по-вашему, что означает диаграмма
Ясно, что перед нами какое-то двойное суждение. Оно говорит нам не только, что «Некоторые x суть y», но и что «Ни один x не есть не- y». Следовательно, «все x суть y», т. е. «Все свежие булочки вкусные». Вот мы и узнали, как выглядит последнее из трёх суждений, приведённых в начале этого параграфа. Итак, общее суждение «Все свежие булочки вкусные» состоит из двух суждений, взятых вместе: «Некоторые свежие булочки вкусные» и «Ни одна свежая булочка не невкусная». Аналогично диаграмма означает «Все x суть y'», т. е. «Все свежие булочки невкусные». А что делать с таким суждением, как «Булочка, которую вы мне дали, вкусная»? Оно частное или общее? — Ну конечно же, частное, — поспешите ответить вы. — Впрочем, одна-единственная булочка вряд ли стоит того, чтобы называть её «некоторые булочки». Нет, мой дорогой импульсивный читатель, оно общее. Ведь как ни мало булочек (а я уверяю вас, что меньше их и быть не может), все же они суть (хотя правильнее было бы сказать «они есть») все булочки, которые вы мне дали! Разделив «Мир булочек» на две части (о красной фишке мы пока забудем) — на булочки, которые вы мне дали (для них я отведу верхнюю половину подноса), и булочки, которые вы мне не дали (их мы условимся складывать на нижней половине подноса), — я обнаружу, что на нижней половине подноса булочек полным-полно, а на верхней их очень мало (меньше некуда!). Предположим теперь, что мне нужно рассортировать булочки на каждой половине подноса: отложить налево вкусные булочки, направо — невкусные. Начну я со всех булочек, которые вы мне дали. Сортировать их я буду самым тщательным образом, приговаривая время от времени: «Ну что за щедрый человек! Чем я смогу отплатить ему за его доброту?» Все вкусные булочки, лежащие на верхней половине подноса, я сложу в левую клетку. Думаю, что это не займет у меня слишком много времени! А вот ещё одно общее суждение: «Барзилаи Беккалегг — честный человек». Означает оно следующее: «Все Барзилаи Беккалегги, которых я в данный момент рассматриваю, честные люди». (Вы, наверное, думаете, что я выдумал столь звучное имя? Ничуть не бывало! Я прочитал его на тележке разносчика где-то в Корнуолле). Такой тип общих суждений, у которых субъект сводится к одному-единственному предмету, называются единичным суждением. Выберем теперь «вкусные булочки» в качестве субъекта суждения, т. е. сосредоточим наше внимание на левой половине подноса, где все булочки обладают признаком y, иначе говоря, вкусные. Предположим, что левая половина размечена следующим образом
Что бы это значило? После того как мы столь подробно объяснили, что означают все возможные случаи для двух клеток, расположенных по горизонтали, нет необходимости тратить время на перебор всех мыслимых случае заполнения двух клеток, выстроенных по вертикали. Думаю, что вы и сами догадались: красная фишка в верхней клетке означает «Некоторые y суть x», или «Некоторые вкусные булочки свежие». — Как же так? — спросите вы. — Ведь с красной фишкой, стоящей в клетке 5, мы уже встречались. Тогда вы поставили красную фишку на клетку 5 и сказали, что это означает «Некоторые свежие булочки вкусные», а теперь вы утверждаете, будто красная фишка, стоящая в клетке 5, означает «Некоторые вкусные булочки свежие». Разве может красная фишка в клетке 5 означать и то и другое суждение одновременно? Вопрос этот весьма глубок и делает честь вашей проницательности, дорогой читатель! Красная фишка, стоящая в клетке 5, действительно означает и то и другое суждение. Если в качестве объекта суждения вы выберете x (т. е. «свежие булочки»), а клетку 5 будете считать стоящей в горизонтальном ряду, получится суждение «Некоторые x суть y», т. е. «Некоторые свежие булочки вкусные». Если же в качестве объекта суждения вы выберете y (т. е. «вкусные булочки»), а клетку 5 будете считать стоящей в вертикальном ряду, получится суждение «Некоторые вкусные булочки свежие». Оба суждения служат двумя различными способами выражения одной и той же истины. Не тратя лишних слов, я просто выпишу все остальные случаи заполнения двух вертикальных клеток, указывая каждый раз суждение, которому они соответствуют. Сравнивая их с различными вариантами заполнения горизонтального ряда, вы без труда во всем разберётесь. Прекрасный способ проверить себя с помощью приводимой ниже таблицы — закрыть сначала правый, потом левый столбец и попытаться самостоятельно восстановить его. Такая проверка поможет вам, как говорят школьники, выучить таблицу «назубок». Будет очень хорошо, если вы составите для себя ещё две таблицы: одну — для нижней половины подноса, другую — для его правой половины.
Обозначения — Суждения
— «Некоторые x суть y'», т. е. «Некоторые вкусные (булочки) чёрствые».
— «Ни один y не есть x», т. е. «Ни одна вкусная (булочка) не свежая». Обратите внимание, что то же самое можно сказать иначе: «Ни одна свежая булочка не вкусная».
— «Ни один y не есть x», т. е. «Ни одна вкусная булочка не чёрствая».
— «Некоторые y суть x, и некоторые y суть x'», т. е. «Некоторые вкусные (булочки) свежие, и некоторые — не свежие».
— «Ни один y не есть x, и ни один y' не есть x», т. е. «Ни один y не существует», или «Вкусных булочек нет».
— «Все y суть x», т. е. «Все вкусные булочки свежие».
— «Все y суть x'», т. е. «Все вкусные булочки не свежие».
Мне кажется, что мы уже сказали все необходимое о малой диаграмме и можем переходить к большой. Её можно представлять себе в виде подноса, расчерченного так же, как мы расчерчивали подносы до сих пор, который, кроме того, разделён на две части (для признака m). Условимся считать, что m означает «полезный». Предположим, что все полезные булочки сложены внутри центрального квадрата, а все не полезные (вредные для здоровья) — вне его, т. е. в какой-то из четырёх внешних причудливо изогнутых клеток. При рассмотрении малой диаграммы булочки, находившиеся в каждой из её клеток, обладали двумя признаками. Теперь же булочки в любой из клеток обладают тремя признаками. Буквы, обозначавшие два признака, мы ставили на границе, отделяющей одну клетку от другой. Теперь же мы будем ставить их у вершин клеток. (Обратите внимание на то, что внешние вершины четырёх наружных клеток считаются помеченными буквой m.) Взглянув на любую клетку, мы можем тотчас же сказать, какими тремя признаками обладают находящиеся в ней предметы. Возьмём, например, клетку 12. В её вершинах стоят буквы x, y', m, поэтому мы знаем, что находящиеся в ней булочки (если таковые существуют) обладают тройным признаком xy'm, т. е. «свежие, невкусные и полезные». Рассмотрим теперь клетку 16. В её вершинах стоят буквы x', y', m'. Следовательно, находящиеся в ней булочки «несвежие, невкусные и не полезные». Перебор всех суждений, содержащих x и y, x и m, y и m, которые можно представить на большой диаграмме, занял бы слишком много времени, и я ограничусь тем, что рассмотрю лишь два или три суждения в качестве примера (думаю, что вы не станете сердиться на меня за это, когда узнаете, что всего таких суждений 96). Но вы поступите очень хорошо, если изучите гораздо больше случаев. Рассмотрим отдельно верхнюю половину большой диаграммы, иначе говоря, суждения с субъектом «свежие булочки». Как изобразить на ней суждение «Ни одна свежая булочка не полезная»? В буквенных обозначениях интересующее нас суждение имеет вид: «Ни один x не есть m». Записанное так, оно говорит нам, что ни одна из булочек, находящаяся на верхней половине подноса (т. е. большой диаграммы), не лежит внутри центрального квадрата. Другими словами, клетки 11 и 12 пусты. На диаграмме такая ситуация изображается так
А как выглядит противоположное суждение «Некоторые x суть m»? Эту трудность мы уже обсуждали. Лучший способ разрешить её состоит, как мне кажется, в следующем. Нужно поставить красную фишку на линию, отделяющую клетку 11 от клетки 12, и считать, что это означает: «Одна из клеток (11 и 12) „занята“, но какая именно, пока ещё не известно». На диаграмме эту ситуацию я обозначу так
Изобразим на диаграмме суждение «Все x суть m». Как мы уже знаем, оно состоит из двух суждений «Некоторые x суть m» и «Ни один x не есть не m». Начнём с отрицательного суждения. Оно говорит нам, что ни одна из булочек, находящихся на верхней половине подноса, не должна лежать вне центрального квадрата, т. е. что клетки 9 и 10 пустые. Ясно, что на диаграмме это выглядит так
Но мы должны ещё нанести на диаграмму суждение «Некоторые x суть m». Оно говорит нам, что некоторые булочки находятся в горизонтальном ряду, состоящему из клеток 11 и 12. Поэтому, как и в предыдущем примере, мы поставим красную фишку на границу, отделяющую клетку 11 от клетки 12, и в результате получим
Попытаемся теперь перевести одну или две диаграммы на обычный язык. Что можно сказать относительно x и y, глядя на диаграмму
Прежде всего мы видим, что квадрат xy ' полностью пуст: и клетка 12, и «уголок» 10 помечены нулями. Относительно квадрата xy диаграмма говорит нам, что он занят. Правда, помечена единицей в нем лишь клетка 11, но и этого вполне достаточно, чтобы утверждать (независимо от того, пуст или занят «уголок» 9), что в квадрате xy что-то есть. Если мы захотим избавиться от признака m и перейдём к меньшей диаграмме, то в её клетках нуль и единица будут расставлены так
что, как известно, означает «Все x суть y». Точно к такому же результату мы бы пришли, если бы верхняя половина большой диаграммы имела вид
А что можно сказать относительно x и y, глядя на диаграмму
Прежде всего, что одна из частей квадрата xy — его «уголок» — пуста. Но эта информация совершенно бесполезна, поскольку в другой его части — клетке 11 — не стоит ничего. Если эта клетка окажется пустой, то и весь квадрат xy будет пуст. Если же клетка 11 окажется занятой, то и квадрат xy будет занят. Итак, поскольку нам неизвестно, какая фишка стоит в клетке 11 — красная или чёрная, — мы ничего не можем сказать и относительно квадрата xy. Зато о другом квадрате — xy ' — мы можем с уверенностью утверждать, что он (как и в предыдущем примере) занят. Перенеся разметку на меньшую диаграмму, получим
что означает «Некоторые x суть y'». Те же принципы применимы и ко всем другим половинкам большой диаграммы — вертикальным и горизонтальным. Например, чтобы представить на большой диаграмме суждение «Все y' суть m'», необходимо взять её правую вертикальную половину (ту, которая отвечает признаку y') и разметить её следующим образом
Если же мы захотим узнать, какое суждение (относительно x и y) содержится в нижней половине большой диаграммы, на которой нули и единицы расставлены так
то, преобразовав её в малую диаграмму
мы без труда «расшифруем» скрытое в ней суждение: «Все x' суть y». Относительно суждений необходимо сделать ещё два замечания. Во-первых, в каждом суждении, начинающемся со слов «некоторые» или «все», утверждается, что субъект суждения существует в действительности. Например, если я говорю: «Все скупые люди эгоистичны», то я подразумеваю что скупые люди существуют в действительности. Если бы я хотел избежать такого утверждения или только сформулировать правило, согласно которому скупость с необходимостью влечёт за собой эгоизм, то я выразился бы иначе: «Ни один скупой человек не есть неэгоист». Это суждение не утверждает, что скупые люди вообще существуют. В нем лишь говорится, что если бы скупые люди существовали, то они были бы эгоистами. Во-вторых, если суждение начинается со слов «некоторые» или «ни один» и содержит более двух признаков, то эти признаки можно произвольно переставлять и относить к любому из терминов суждения. Например, суждение «некоторые abc суть def» можно преобразовать в суждение «Некоторые bf суть acde», причём каждое из суждений (и исходное, и преобразованное) эквивалентно суждению «Некоторые предметы суть abcdef». Ещё пример. Суждение «Ни один мудрый пожилой человек не является опрометчивым и безрассудным игроком» можно преобразовать так: «Ни один опрометчивый пожилой игрок не является мудрым и безрассудным (человеком)». Оба суждения эквивалентны следующему: «Ни один человек не является мудрым, пожилым, опрометчивым и безрассудным игроком».
Силлогизмы
Предположим теперь, что мы разделили наш «Мир предметов» тремя способами в соответствии с тремя различными признаками. Из трёх признаков можно составить три различные пары (например, если имеются признаки a, b, c, то из них можно составить три пары ab, ac и bc). Предположим кроме того, что два суждения, содержащие две из трёх пар признаков, нам даны, и что из них мы умеем выводить третье суждение, содержащее оставшуюся (третью) пару признаков. (Пусть, например, мы разделили наш «Мир» в соответствии с признаками m, x и y. Тогда, если нам даны два суждения «Ни одно m не есть x'» и «Все m' суть y», содержащее пары признаков mx и my, то, опираясь на них, мы можем доказать третье суждение, содержащее признаки x и y.) В этом случае те суждения, которые даны, называются посылками, третье, выводимое из них суждение — заключением, а все вместе — силлогизмом. Ясно, что либо один из признаков непременно должен входить в обе посылки, либо в одну посылку должен входить сам признак, а в другую — ему противоположный. В первом случае термин, который повторяется дважды (например, когда в качестве посылок выбраны суждения «Некоторые m суть x» и «Ни одно m не есть y'»), называется средним термином, поскольку он служит своего рода связующим звеном между двумя другими терминами. Во втором случае (например, когда посылки имеют вид суждений «Ни один m не есть x'», и «Все m' суть y») два термина, содержащие противоположные признаки, можно назвать средними терминами. Таким образом, в первом случае средний термин — это класс «m- предметов», во втором случае в роли средних терминов выступают два класса — «m- предметов» и «m'- предметов». Признак, входящий в средний член или в средние члены, не входит в заключение. О нем говорят, что его «исключили» (по-учёному, «элиминировали»), что означает буквально «выставили за дверь». Попытаемся вывести заключение из двух посылок:
«Некоторые свежие булочки неполезные», «Ни одна вкусная булочка не неполезная».
Чтобы выразить их с помощью фишек, необходимо разделить булочки тремя различными способами: по тому, свежие ли они, вкусные или полезные. Для этого нам придётся воспользоваться большой диаграммой, условившись заранее, что x означает «свежие», y — «вкусные» и m — «полезные». (Все, что находится внутри центрального квадрата, по предположению обладает признаком m, все, что находится вне его, — признаком m', т. е. «не- m».) В качестве m лучше всего выбрать признак, входящий в средний термин или в средние термины. (Я обозначил этот признак буквой m потому, что именно с неё начинается слово middle — «средний».) Изображая на диаграмме посылки силлогизма, лучше всего начинать с отрицательной посылки («Ни один…» и т. д.). Дело в том, что расстановка черных фишек не вызывает никаких сомнений и помогает уточнить расположение красных фишек, которые иногда испытывают лёгкую неуверенность относительно того, где их присутствие наиболее желательно. Изобразим, например, суждение «Ни одна вкусная булочка не есть неполезная (булочка)», т. е. «Ни одна y- булочка не есть m'- булочка». Оно говорит нам, что ни одна из булочек, находящихся на половине y подноса, не находится в его клетках m' (т. е. «уголках», лежащих вне центрального квадрата). Следовательно, обе клетки — m'- клетка 9 и клетка 15 — пусты, и на каждую из них мы должны поставить по чёрной фишке:
Нам осталось изобразить на диаграмме вторую посылку, а именно: «Некоторые свежие булочки суть неполезные (булочки)», т. е. «Некоторые x- булочки суть m' (булочки)». Последняя форма суждения говорит нам, что некоторые из булочек, находящихся на половине x нашего подноса, разместились в его клетках, помеченных буквой m'. Следовательно, одна из этих двух клеток — 9 или 10 — занята. Поскольку нам неизвестно, на какую из двух клеток следует поставить красную фишку, мы, следуя обычному правилу, должны были бы поставить её на границу, разделяющую клетки «соперницы». Однако в данном случае первая посылка позволяет решить спор: в ней говорится, что клетка 9 пуста. Следовательно, у красной фишки нет выбора. Волей-неволей ей приходится отправиться на клетку 10:
Какие сведения можно извлечь из этой диаграммы, чтобы с их помощью расставить фишки на малой диаграмме и, исключив признак m, получить суждение, содержащее только признаки x и y? Рассмотрим по очереди все четыре клетки малой диаграммы. Начнём с клетки 5. Все, что мы о ней знаем, сводится к следующему: та часть большой диаграммы, которая расположена вне её, пуста. О том, что находится внутри этой клетки, ничего не известно. Следовательно, квадрат 5 может быть и пустым, и занятым. Какая из этих возможностей соответствует действительности, сказать трудно. Поэтому мы и не осмелимся поставить на клетку 5 ни красную, ни чёрную фишку. Что можно сказать о клетке 6? Здесь положение немного лучше. Ведь мы уже знаем, что в «уголке», примыкающем извне к этой клетке, что-то есть. Следовательно, на клетке 10 большой диаграммы стоит красная фишка. Правда, нам неизвестно, пуста или занята сама клетка 6, но какое это имеет значение? Одной-единственной булочки в углу квадрата совершенно достаточно, чтобы мы имели право сказать: «Этот квадрат занят» и поставить на него красную фишку. При рассмотрении клетки 7 мы оказываемся в том же положении, как и рассмотрении клетки 5: мы знаем, что она частично пуста, но не знаем, пуст или занят примыкающий к ней извне «уголок». Таким образом, на эту клетку мы также не можем поставить ни красную, ни чёрную фишку. Относительно клетки 8 нам вообще ничего не известно. Каков же результат? Он показан на диаграмме:
Наше «заключение» необходимо извлечь из весьма скудного обрывка сведений — из того лишь факта, что в квадрате ху ' стоит красная фишка. Так мы приходим к суждению «Некоторые x суть y'», т. е. «Некоторые свежие булочки (суть) невкусные (булочки)», или, если вы предпочитаете выбрать в качестве субъекта y', «Некоторые невкусные булочки (суть) свежие (булочки)» (первое звучит все-таки более обнадеживающе). Запишем теперь силлогизм полностью. Условимся ставить после посылок горизонтальную черту (означающую «следовательно») и опускать для краткости слово «булочки», стоящее в конце каждой посылки. У нас получится следующее:
«Некоторые свежие булочки неполезные». «Ни одна вкусная булочка не неполезная». ––– «Некоторые свежие булочки невкусные».
Вот вы и решили (надо сказать, весьма успешно) свой первый силлогизм. Позвольте поздравить вас и выразить надежду, что это всего лишь начало длинной и славной серии аналогичных побед! Попробуем теперь решить ещё один силлогизм, гораздо более трудный, чем первый, после чего вы спокойно сможете играть в «Логическую игру» либо сами с собой, либо (что предпочтительнее) с приятелем, которому эта забава придётся по вкусу. Посмотрим, какое заключение можно вывести из двух посылок: «Все драконы не лукавые». «Все шотландцы лукавые». Имейте в виду: я отнюдь не гарантирую, что посылки силлогизма выражают реальные факты. Во-первых, мне никогда не приходилось видеть дракона. Во-вторых, для нас, логиков, не имеет ни малейшего значения, истинны или ложны наши посылки: все, что мы должны уметь делать, — это решать, приводят ли они логически к определённому заключению. Иначе говоря, мы должны уметь доказывать, что если бы посылки истинными, то и заключение также должно было бы быть истинным. Как видите, настала пора отказаться от булочек, и поднос перестал быть для нас полезным. В качестве «Мира» мы должны выбрать какой-то класс предметов, включающий в себя шотландцев и драконов. Может быть, такие предметы имеет смысл назвать «существами»? Поскольку «лукавые», очевидно, является признаком, входящим в средние члены, мы выберем следующие обозначения: m =«лукавые», x =«драконы», и y =«шотландцы». Записанные полностью, наши посылки примут следующий вид: «Все существа — драконы — нелукавые (существа)». «Все существа — шотландцы — лукавые (существа)». Подставляя вместо слов буквенные обозначения, получаем: «Все x суть m'». «Все y суть m». Первая посылка, как вы уже знаете, состоит из двух частей: «Некоторые x суть m'» и «Ни один x не есть m». Вторая посылка также состоит из двух частей: «Некоторые y суть m» и «Ни один y не есть m'». Начнём с отрицательных частей обеих посылок, т. е. представим с помощью большой диаграммы, во-первых, суждение «Ни один x не есть m» и, во-вторых, суждение «Ни один y не есть m'». Думаю, вам не нужно объяснять, почему этим суждениям (в отдельности) соответствуют диаграммы
и что, взятые вместе, эти диаграммы образуют одну диаграмму
Осталось изобразить на полученной диаграмме две утвердительные части посылок — «Некоторые x суть m'» и «Некоторые y суть m». Единственные две клетки большой диаграммы, в которых могут находиться предметы, обладающие признаками xm', — это «уголки» 9 и 10. Относительно клетки 9 уже известно, что она пуста. Следовательно, красную фишку мы должны поставить на «уголок» 10. Аналогично предметы с признаками ym могут находиться лишь в клетках 11 и 13. В клетке 11 уже стоит чёрная фишка — клетка пуста. Следовательно, красную фишку необходимо поставить на клетку 13. Окончательный результат — диаграмма
А что из представленных здесь сведений можно использовать при построении малой диаграммы? Рассмотрим по порядку все четыре клетки малой диаграммы. Клетка 5. Мы видим, что она полностью пуста (и поэтому ставим на неё чёрную фишку). Клетка 6. Эта клетка занята (её мы отметим красной фишкой). Клетка 7. То же самое. Клетка 8. Относительно этой клетки никаких сведений у нас нет. Итак, малая диаграмма заполнена весьма щедро:
А какое заключение можно вывести отсюда? Одно суждение просто не в состоянии вместить столь богатую информацию, нам придётся уступить и согласиться на этот раз на два суждения. Выбрав в качестве субъекта x, мы получим первое суждение: «Все x суть y'», т. е. «Все драконы не шотландцы». Выбрав в качестве субъекта y, мы получим второе суждение: «Все y суть x'», т. е. «Все шотландцы не драконы». Запишем теперь весь силлогизм полностью: и две наши посылки, и оба наших заключения. Вот что у нас получится:
«Все драконы не лукавые». «Все шотландцы лукавые». ––– «Все драконы не шотландцы». «Все шотландцы не драконы».
На прощание я хотел бы сделать одно важное замечание. В некоторых книгах по логике вообще не предполагается, что какой-то предмет существует. Суждение «Некоторые x суть y» в таких книгах понимается так: «Признаки x и y совместимы, в силу чего некий предмет может одновременно обладать ими обоими». Суждение же «Ни один x не есть y» они интерпретируют как несовм< Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|