Активно-емкостная нагрузка
Рисунок 11 – Схема с активно-емкостной нагрузкой
Рассмотрим влияние активно-емкостной нагрузки на примере работы однофазного мостового выпрямителя. Рисунок 12 – Зависимость токов и напряжений
На рисунке представлены графические зависимости токов и напряжений, поясняющие переходные процессы в схеме в момент подключения выпрямителя к источнику U1. На интервале tзар U1>UС и при этом происходит заряд емкости C сглаживающего фильтра через внутреннее сопротивление выпрямительного звена. При этом появляется большой импульсный ток, значения которого в 20…40 раз выше установившегося значения средневыпрямленного тока вентиля. Особенно это выражено в источниках питания с бестрансформаторным входом. Для ограничения этого тока вводят резисторы, терморезисторы или резисторы шунтированные управляемыми ключами, выполненные на симисторах, тиристорах или динисторах. Ключи позволяют с учетом времени установления переходного процесса производить ограничение тока только в момент пуска источника питания, следовательно, повышаются КПД и надежность выпрямителя. На интервале tраз, когда напряжение на емкости уравнивается с напряжением источника, конденсатор разряжается на нагрузку. С увеличением тока нагрузки увеличивается уровень пульсации выпрямленного напряжения из- за уменьшения постоянной цепи разряда tраз =RНС. При этом ухудшаются сглаживающие действия фильтра. При расчете выпрямителя с емкостной нагрузкой используют метод Терентьева – метод номограмм. Он основан на расчете вспомогательных коэффициентов зависящих от угла протекания тока через вентиль. Вводят коэффициент А=f(q), где q - угол протекания тока через вентиль. Для различных схем выпрямителей приводятся номограммы, которые получены экспериментальным путем для различных мощностей и схем выпрямителей. Расчет параметров Uобр, Iаср, Iад, U2, I2 выполняют через вспомогательные коэффициенты: В, С, D=f(A). Для получения связи среднего тока через вентиль с параметром А проведем интегрирование на интервале q. При выводе соотношения примем емкость конденсатора, близкую к бесконечности (СÞ¥), а пороговое напряжение диода равным нулю. Для получения среднего значения тока через вентиль переместим оси координат в середину импульса тока и воспользуемся уравнением для среднего значения тока: (1)
, (2). Нижеприведенные диаграммы поясняют вывод соотношений для Ud. Рисунок 13 – Диаграммы соотношений для Ud
На интервале 2q ток вентиля совпадает с током нагрузки. Приравняем (1) и (2) и поделим внутреннюю скобку в выражении (1) на cosq, получим: . Схема удвоения напряжения Классическая (симметричная) схема удвоения состоит из двух однотактных выпрямителей, каждый из которых использует свою полуволну напряжения. Рисунок 14 – Схема удвоение напряжения
Рисунок 15 – График напряжения
Напряжение на нагрузке складывается из напряжений на конденсаторах С1 и С2. Если пульсации малы, то постоянная составляющая на каждом конденсаторе U01 ≈ U2m, а напряжение на нагрузке U0 ≈ 2U2m. Кроме того, при сложении компенсируется первая и все нечетные гармоники пульсаций. Поэтому схема ведет себя как двухтактная, хотя и состоит из двух однотактных схем. Недостатком симметричной схемы удвоения, с точки зрения безопасности, является отсутствие общей точки нагрузки и трансформатора. Используется также и несимметричная схема удвоения, её отличием от предыдущей является то, что нагрузка имеет общую точку с трансформатором. Поэтому их можно соединить с корпусом, при этом основная частота пульсаций равна частоте сети.
Рисунок 16 – Несимметричная схема удвоения напряжения Рисунок 17 – График напряжения несимметричной схемы
В этой несимметричной схеме конденсатор С1 выполняет функцию промежуточного накопителя, не участвует в сглаживании пульсаций, поэтому её массогабаритные показатели хуже, чем у симметричного удвоителя. Однако есть и достоинства. Схему можно изобразить так: Рисунок 18 – Альтернативная несимметричная схема
Получилась регулярная структура, которую можно наращивать и получить умножитель напряжения.
Рисунок 19 – Множитель напряжения
Нагрузку можно подключить к любой группе конденсаторов и получить чётное или нечётное умножение. На схеме показано чётное умножение - напряжение на нагрузке U0 ≈ 6Um2. Обычно такие умножители собирают в виде единого блока и заливают компаундом. Число конденсаторов в схеме равно коэффициенту умножения. Расчетные соотношения для рассмотренных схем можно найти в справочнике. Недостатком схем умножения является их высокое внутреннее сопротивление и низкий коэффициент полезного действия вследствие большого числа перезарядов. Более высоким КПД обладают бестрансформаторные высоковольтные выпрямители с одновременным зарядом n штук накопительных конденсаторов С1. Рисунок 20 – Бестрансформаторный высоковольтный выпрямитель
Управляемые зарядный и разрядные ключи Кз и Кр работают синхронно и в противофазе. конденсаторы С1 параллельно заряжаются от сети и последовательно разряжаются на нагрузку через разрядные ключи Кр. При этом, напряжение на нагрузке в n раз больше амплитуды напряжения сети. Лекция 4. Управляемые выпрямители.
Режимы работы выпрямителей В зависимости от вида выпрямленного тока существует три режима. Обозначим угол проводимости вентилей– λ. Режим работы, при котором токи вентилей следуют друг за другом без пауз, но выпрямленный ток спадает до нуля, называется граничным (рис. 5.1 а). В граничном режиме угол проводимости вентилей mπ = λ 2 гр. (5.1) Режим работы, при котором токи вентилей следуют друг за другом с паузой, называется прерывистым (рис. 5.1 б). В прерывистом режиме угол проводимости вентилей mπ < λ 2 пр. (5.2)
Режим работы, при котором выпрямленный ток не спадает до нуля, а анодные токи соседних вентилей перекрываются или следуют без пауз, называется непрерывным(рис. 5.1 в). В непрерывном режиме угол проводимости вентилей mπ ≥ λ 2 н. (5.3) Режим работы существенно влияет на все характеристики выпрямителя.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|