Глава 1. Линейное программирование
Математическое программирование, являющееся одним из направлений исследования операций, изучает задачи поиска экстремума функции нескольких переменных при наличии ограничений, наложенных на эти переменные. Если функция нескольких переменных и все ограничения являются линейными относительно этих переменных, то математическое программирование называется линейным (ЛП). Программирование в данном термине имеет смысл планирования. Математическое программирование возникло в 30-е годы XX века. Линейное программирование началось с работы (1938 г.) ленинградского математика Л. В. Канторовича, в которой содержались постановка и метод решения задачи о выборе наилучшей производственной программы. В 1975 году Л. В. Канторовича стал лауреатом Нобелевской премии «за вклад в теорию оптимального распределения ресурсов». Независимо линейное программирование начало развиваться и в США. В 1947 году американский учёный Дж. Данциг описал один из основных методов решения задач ЛП, получивший название «симплексный». Укажем несколько общих ситуаций, в которых линейное программирование применяется часто и эффективно: · задачи о составлении смеси, цель которых заключается в выборе наиболее экономичной смеси ингредиентов при учете ограничений на физический или химический состав смеси и на наличие необходимых материалов; · задачи производства, целью которых является подбор наиболее выгодной производственной программы выпуска одного или нескольких видов продукции при использовании некоторого числа ограниченных источников сырья; · задачи распределения, цель которых состоит в том, чтобы организовать доставку материалов от некоторого числа источников к некоторому числу потребителей так, чтобы оказались минимальными либо расходы по этой доставке, либо время, затрачиваемое на нее, либо некоторая комбинация того и другого. В простейшем виде это задача о перевозках (транспортная задача).
1.1. Формы модели задач линейного программирования Построение математической модели изучаемого процесса включает в себя следующие этапы: 1) выбор переменных задачи; 2) составление системы ограничений; 3) выбор целевой функции. Переменными задачи называют величины Система ограничений включает в себя систему уравнений и неравенств, которым удовлетворяют переменные задачи и которые следуют из ограниченности ресурсов или других экономических или физических условий. Целевой функцией называют функцию переменных задачи, экстремум которой требуется найти. В общем случае задача ЛП может быть записана в виде:
т.е. требуется найти экстремум целевой функции (1.1) и соответствующие ему значения переменных Приведем математическую модель задачи использования ресурсов. Для изготовления нескольких видов продукции
Таблица 1.1
Пусть
Аналогичные неравенства будут и для остальных видов ресурсов. Следует учитывать, что все значения Общая прибыль, получаемая от реализации всей продукции может быть представлена как функция
Пример 1.1. Фирма производит две модели А и В сборных книжных полок. Их производство ограничено наличием сырья (высококачественных досок) и временем машинной обработки. Для каждого изделия модели А требуется 3 Составим математическую модель. Пусть Итак, нужно максимизировать функцию
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|