Связь между дирекционными углами предыдущей и последующей линий
На рис. 25 представлена схема определения дирекционных углов сторон теодолитного хода AB. Известен дирекционный угол исходной стороны α0 и измерены геодезическим прибором теодолитом углы β1, β2, β3, лежащие справа по ходу от А к В. Рис. 25. Схема определения дирекционных углов сторон теодолитного хода Найдём дирекционные углы α1, α2, α3 остальных сторон хода. На основании зависимости между прямыми и обратными дирекционными углами можем написать: α1 + β1 = α0 + 180° из данного выражения следует, что α1 = α0 + 180° – β1 (1). Аналогично вычисляются дирекционные углы последующих сторон теодолитного хода: α2 + β2 = α1 + 180° → α2 = α1 + 180° – β2 (2) α3 + β3 = α2 + 180° → α3 = α2 + 180° – β3 (3) ............................................................................... αn + βn = αn-1 + 180° → αn = αn-1 + 180° – βn (n) То есть, дирекционный угол последующей стороны равен дирекционному углу предыдущей стороны плюс 180° и минус угол, лежащий справа по ходу. Для получения контрольной формулы в выражение (2) подставим значение α1, из выражения (1) α2 = α0 + 2 ∙ 180° – (β1 + β2). Если продолжить аналогичные действия для последующих сторон теодолитного хода, то получим αn = α0 + n ∙ 180° – (β1 + β2 + β3 +... + βn). или αn – α0 = n ∙ 180° – ∑β. или α0 – αn = ∑β – n ∙ 180°. Эта формула может служить контрольной при вычислении дирекционных углов по увязанным углам β. Если же вместо суммы исправленных углов подставить сумму измеренных углов ∑β, то та же формула позволит определить невязку fβ измеренных углов теодолитного хода, если дирекционные углы α0 и αn начальной и конечной сторон хода известны
fβ = ∑β – n ∙ 180° – (α0 – αn). Иногда дирекционные углы вычисляют по углам, лежащим слева по ходу от А до В (λ1, λ2, …, λn). β1 = 360° – λ1 β2 = 360° – λ2 ........................ βn = 360° – λn Подставим эти значения в выражения (1), (2),..., (n) получим α1 = α0 – 180° + λ1 α2 = α1 – 180° + λ2 ................................. αn = αn-1 – 180° + λn. Для проверки правильности вычисления дирекционных углов по углам λ, лежащим слева по ходу, используют выражения αn – α0 = ∑λ – n ∙ 180° или αn – α0 = ∑λ + n ∙ 180°. Тогда невязка fβ определяется по формуле fβ = ∑λ + n ∙ 180° – (αn – α0). Вопросы для самоконтроля 1. Что называется ориентированием на местности? 2. Что называется дирекционным углом линии, и в каких пределах он измеряется? 3. Что такое румб линии, и в каких пределах он измеряется? 4. Что называется истинным и магнитным азимутами? 5. Какова зависимость между дирекционным углом и истинным азимутом и между истинным азимутом и магнитным азимутом? 6. Что называется сближением меридианов? 7. Что называется склонением магнитной стрелки? Лекция 3. Геодезическая съемка. Рельеф, его изображение на картах и планах. 3.1. Геодезическая съемка. План, карта, профиль 3.2. Рельеф. Основные формы рельефа 3.3. Изображение рельефа на планах и картах 3.4. Цифровые модели местности 3.5. Задачи, решаемые на планах и картах 3.6. Вопросы для самоконтроля
Геодезическая съемка. План, карта, профиль Чтобы спроектировать линию местности на горизонтальную плоскость, нужно определить её горизонтальное проложение (проекцию линии на горизонтальную плоскость) и уменьшить его до определенного масштаба. Для проектирования на горизонтальную плоскость какого-либо многоугольника (рис. 26) измеряют расстояния между его вершинами и горизонтальные проекции его углов. Совокупность линейных и угловых измерений на земной поверхности называется геодезической съемкой. По результатам геодезической съемки составляют план или карту.
Рис. 26. Проектирование участка земной поверхности на горизонтальную плоскость План – чертеж, на котором в уменьшенном и подобном виде изображается горизонтальная проекция небольшого участка местности. Карта – уменьшенное и искаженное, вследствие влияния кривизны Земли, изображение горизонтальной проекции значительной части или всей земной поверхности, построенное по определенным математическим законам. Таким образом, и план, и карта – это уменьшенные изображения земной поверхности на плоскости. Различие между ними состоит в том, что при составлении карты проектирование производят с искажениями поверхности за счет влияния кривизны Земли, на плане изображение получают практически без искажений. В зависимости от назначения планы и карты могут быть контурные и топографические. На контурных планах и картах условными знаками изображают ситуацию, т.е. только контуры (очертания) горизонтальных проекций местных предметов (дорог, строений, пашен, лугов, лесов и т.п.). На топографических картах и планах кроме ситуации изображают ещё рельеф местности. Для проектирования железных, шоссейных дорог, каналов, трасс, водопроводов и других сооружений необходимо иметь вертикальный разрез или профиль местности. Профилем местности называется чертеж, на котором изображается в уменьшенном виде сечение вертикальной плоскостью поверхности Земли по заданному направлению. Как правило, разрез местности (рис. 27, а) представляет собой кривую линию ABC...G. На профиле (рис. 27, б) она строится в виде ломаной линии abc...g. Уровенную поверхность изображают прямой линией. Для большей наглядности вертикальные отрезки (высоты, превышения) делают крупнее, чем горизонтальные (расстояния между точками). Рис. 27. Вертикальный разрез (а) и профиль (б) местности
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|