А. Статистические оценки и законы распределения.
Наиболее важными оценками статистических параметров (статистик) исходной информации, то есть значений того или иного геофизического поля xi, являются оценки математического ожидания М х, дисперсии Д x, среднеквадратичного (стандартного) отклонения σх. Оценка математического ожидания случайной величины x, распределенной по нормальному закону [2], есть ее среднее арифметическое значение
где n- объем выборки, xi – i-е значение Х в данной выборке.
Дисперсия Д х определяется как математическое ожидание квадрата отклонения случайной величины от ее среднего значения по формуле:
а стандартное отклонение σх: σх=Sx= Кроме этих основных показателей необходимо зачастую оценивать и такие как размах выборки Н=Xmax-Xmin, асимметрия К= и эксцесс Самый удобный способ получить общее представление о структуре выборки – построение гистограммы. Она позволяет сгруппировать данные в пределах выбранного интервала значений и упорядочить такие группы (по возрастанию или убыванию значений). Интервал гистограммы, вообще говоря, можно выбирать произвольно, ориентируясь на ее форму и на предположения о наиболее вероятном типе теоретического распределения. Однако, в ряде приложений для примерной оценки длины интервала пользуются какой-либо эмпирической формулой, то есть формулой, построенной на основе опыта статистической обработки больших объемов информации. В данном пособии рекомендуется так называемая формула Стерджесса Тогда число интервалов гистограммы j определяется просто как целая часть отношения Н/Δх. Таким образом, гистограмма есть графическое изображение группировки выборки данных объема n по j интервалам Δх.
Если долю случайных наблюдений внутри интервала обозначить mj, то гистограмма может быть представлена как распределение частот Зная выборочные оценки исследуемой совокупности можно пытаться аппроксимировать гистограмму той или иной кривой теоретического распределения. Гипотеза о виде распределения всегда выдвигается исследователем. При этом все определяется конкретной задачей, стоящей перед ним. Можно указать несколько типичных ситуаций [9]. 1. Геофизик-исследователь сопоставлением выборочного и теоретического распределения проверяет справедливость построенной им вероятностно-статистической модели взаимодействия физического поля со средой или такой же модели геолого-геофизической обстановки. Здесь предполагается точное знание модельного теоретического распределения. 2. Геофизик-интерпретатор решает вопрос о принадлежности нескольких выборок данных к единой генеральной совокупности. Такие задачи нередко возникают при обработке больших объемов геолого-геофизических показателей с целью районирования территорий или с целью создания представительной модели среды. 3. Геофизик-интерпретатор нуждается в выборке с заданным типом распределения. Чаще всего это случается, когда математический аппарат, используемый интерпретатором, предполагает подобного вида ограничения на статистические свойства исходного материала. Например, методы регрессионного анализа в своей статистической постановке требуют нормального распределения отклонений наблюденных значений от линии регрессии [10]. Проверка гипотезы о виде распределения обычно выполняется с помощью критерия Пирсона (χ2 – критерия) [10]. Его значение вычисляется следующим образом. Для центра каждого κ-го интервала гистограммы (их число не должно быть меньше пяти-семи) по выбранному типу распределения рассчитывается теоретическая частота Рκ, а затем и теоретическое (ожидаемое) число наблюдений n Рκ, попадающих в его пределы (это число не должно быть меньше 5-10, в противном случае интервалы следует укрупнить).
Если выборочные показатели в каждом интервале значительно отличаются от ожидаемых, то маловероятно, чтобы исследуемая выборка была извлечена из совокупности, отвечающей данному теоретическому распределению. Вычисление критерия χ2 производится по формуле χ2= где mk – число наблюдений в k-ом интервале: nPk – ожидаемое число наблюдений в том же интервале. Полученное значение χ2 сравнивается с теоретической величиной, которую следует отыскать в таблице χ2 (ν,α) – распределения. Здесь ν – число степеней свободы (чаще всего это n-1); α – уровень значимости в процентах или относительных единицах. В геологии, как правило, ограничиваются 5%-ым уровнем [9].
Гипотеза о выбранном характере распределения принимается, если вычисленное значение χ2 не превышает табличное. Теория распределений применительно к вопросам разведочной геофизики развита еще недостаточно полно. Практически не вызывает сомнений лишь характер распределения погрешностей измерений в полевых геофизических экспериментах, который хорошо аппроксимируется нормальным (Гауссовым) законом Этот закон вообще широко распространен в природе, ему подчиняется масса сложных вероятностных процессов, которые в свою очередь являются комбинацией большого числа разнородных случайных событий [9]. Однако, в геофизической практике может быть использовано и множество других закономерностей распределения случайных величин. В настоящем пособии кроме закона Гаусса при проверке гипотез о характере выборочного распределения есть возможность использовать логнормальное распределение
где экспоненциальное распределение равномерное распределение где a<х<b;
гамма-распределение где
Р(х)= где к= 0,1,2,3……… биномиальное распределение где n – число интервалов, Следует иметь ввиду, что в чисто геологических исследованиях, в отличие от прикладных геофизических, вопросам классификации распределений применительно к описанию геологических характеристик уделялось весьма большое внимание [10]. Поэтому имеется возможность, базируясь на тех или иных связях геологических показателей с геофизическими параметрами, использовать накопленные геологами статистические сведения для выдвижения обоснованных гипотез о типах распределений физических параметров геологических сред. Для выполнения лабораторных работ по статистической модели интерпретации студенту придется воспользоваться электронным банком цифровой информации геопотенциальных полей и его матобеспечением.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|