Магнитные характеристики ферромагнетиков
Ферромагнитные материалы относятся к веществам, которые под воздействием внешнего (намагничивающего) магнитного поля способны намагничиваться. При этом они сами в окружающем пространстве создают магнитное поле. Степень намагниченности определяется вектором намагниченности М, который пропорционален вектору напряженности H поля, создаваемого ферромагнетиком. Количественно намагниченность, А/м, определяется из выражения
где V — объем вещества; т — элементарный магнитный момент.
Степень намагниченности М различных материалов под воздействием одного и того же намагничивающего поля напряженностью Я неодинакова. Она зависит от вида материала и его состояния (температура, наличие структурных повреждений и т.д.). Для количественной оценки способности вещества намагничиваться в магнитном поле вводят безразмерную характеристику — магнитную восприимчивость . Для изотропного вещества, свойства которого одинаковы во всех направлениях, связь между намагниченностью М и напряженностью магнитного поля Н устанавливается соотношением
Напряженностью магнитного поля Н (векторная величина) называется сила, с которой единичный полюс в данной точке пространства отталкивается или притягивается. Напряженность магнитного Поля равна силе, отнесенной к единичному полюсу, Н = F/т; в системе СИ она измеряется в А/м. Поле, созданное в веществе, ориентирует его элементарные магниты, и в окружающем пространстве возникает магнитная индукция (влияние) В. Магнитной индукцией называется силовая (векторная) характеристика магнитного поля, складывающаяся из индукции внешнего намагничивающего поля и индукции поля, создаваемого ферромагнетиком:
, Где Гн/м – магнитная постоянная (магнитная проницаемость пустоты). Магнитная индукция В является основной характеристикой магнитного поля, определяющей его величину и направление. В международной системе единиц СИ магнитная индукция измеряется в теслах (Тл). Являясь по определению плотностью магнитного потока, она описывается также уравнением В = Ф/S, где Ф — магнитный поток, измеряемый в веберах (Вб), проходящий через контур; S – площадь контура, м2, в направлении, перпендикулярном Ф. Приняв получим
.
Величина называется относительной магнитной проницаемостью, она является безразмерной физической величиной, характеризующей магнитные свойства ферромагнетиков. Чем больше проницаемость, тем меньше магнитное сопротивление R, которое обратно пропорционально магнитной проницаемости, т.е. R=1/ . Величина , и R не являются константами и определяются по сложной зависимости. Так, магнитную проницаемость определяют по кривой, представленной на рис. 7.1 [2]. Различают начальную , максимальную и дифференциальную магнитную проницаемость:
Рис. 7.1. Зависимость магнитной проницаемости (I) и дифференциальной магнитной проницаемости (2) от напряженности поля Н
В зависимости от величины все вещества делят на три класса: диамагнетики, парамагнетики и ферромагнетики. У диамагнетиков << 0; У парамагнетиков > 0; у ферромагнетиков >> 0 (104 и более). Ферромагнетики отличаются от парамагнетиков рядом свойств: • кривая намагничивания, выражающая зависимость между H и • магнитная восприимчивость ферромагнетиков при некоторой
• кривые намагничивания и перемагничивания ферромагнетика На зависимости В от H выделяют ряд характерных точек, имеющих соответствующие названия. Магнитной индукцией насыщения Вs называют индукцию, соответствующую максимуму М. Дальнейшее увеличение В с ростом Н осуществляется только за счет роста R, так как В = (H+ М). В зависимости от достигнутой величины индукции при перемагничивании различают предельную и частную петли гистерезиса. Предельная петля соответствует намагничиванию материала до насыщения Вs. Рис. 7.2. Петля магнитного гистерезиса: 0—1 — первоначальная кривая намагничивания из размагниченного состояния; 1—2 — нисходящая ветвь; 4—1 — восходящая ветвь; 1—2—3—4—1 — предельная петля гистерезиса
Все остальные петли называются частными гистерезисными циклами, получаемыми при меньших, чем Hмах, напряженностях поля. Остаточной магнитной индукцией Вs называют индукцию, которая остается в предварительно намагниченном до насыщения материале после снятия магнитного поля. Коэрцитивная сила Нс (от латинского соеrcitio — удерживание) — напряженность магнитного поля, необходимая для полного размагничивания предварительно намагниченного до насыщения ферромагнетика (получения В= 0 по предельной петле гистерезиса). Магнитные свойства ферромагнетиков (в первую очередь сталей) определяются их химическим составом. Так, введение никеля, марганца, углерода, азота и меди уменьшает начальную магнитную проницаемость и повышает коэрцитивную силу Нс. Одновременное введение кремния, хрома, молибдена, ниобия, вольфрама и ванадия увеличивает ц и уменьшает Нс. Между начальной магнитной проницаемостью и коэрцитивной силой Нс для сталей существует обратно пропорциональная зависимость. Так, для диапазона значений Нс = О, 2...5 кА/м и = 10...270 установлена зависимость = (0,17Hc.) -1 (см.: Богачева Н. Д. Расширение возможностей применения метода коэрцитивной силы // В мире неразрушающего контроля. - М., 2005 г. — № 2. - С. 8-10).
Свойства ферромагнетиков объясняются наличием в них равномерно расположенных самопроизвольно намагниченных до точки насыщения доменов (объемов), разделенных граничным переходным слоем (домен — от французского domiane — владение, область, сфера). Размеры доменов колеблются в пределах (0,005...0,5)10-3 м, толщина граничного слоя (0,25...0,35)10-7 м. Векторы намагниченности каждого из доменов направлены вдоль так называемых направлений легкого намагничивания. Намагниченность соседних доменов направлена либо встречно, либо под углом 90°. Это связано с тем, что направлением легкого намагничивания ферромагнетика является ребро куба кристаллической решетки {для железа) или пространственная диагональ куба (для никеля). Ввиду хаотичности направлений этих векторов при отсутствии внешнего магнитного поля общая намагниченность всего объема материала равна нулю. При помещении ферромагнетика в магнитное поле границы между доменами начинают смещаться и векторы их намагниченности разворачиваются по направлению намагничивающего поля, в результате чего ферромагнетик намагничивается. При изменении намагничивающего поля доменные границы смещаются скачками, так как для их смещения необходимо преодолеть некоторый энергетический уровень. При этом, в соответствии с законом сохранения энергии, увеличивается энергия граничного слоя между доменами. Такие скачки можно увидеть при большом (109) увеличении кривой намагниченности (см. рис. 7.2). Этот эффект открыт в 1919 г. немецким ученым Генрихом Баркгаузеном и носит его имя. Параметры скачков Баркгаузена (их число, форма и длительность, спектральное распределение) используют для контроля качества и свойств материалов. Этот метод применяют к тонким лентам и листам, так как при большой массе намагничиваемого материала скачки сливаются в сплошной шум. Вместе с тем установлено, что ЭДС магнитных шумов перемагничивания связана не только с массой намагничиваемого материала, но и с уровнем действующих в нем напряжений. Эта зависимость используется для контроля уровня остаточных и приложенных напряжений в деталях из ферромагнитных материалов. Например, в магнитно-шумовом приборе ПИОН-01 регистрация ЭДС магнитных шумов перемагничивания осуществляется с помощью накладного преобразователя, последовательно размещаемого вдоль направлений действия главных напряжений. Прибор успешно применяется не только при контроле напряженно-деформированного состояния, но и ударной вязкости КСU металла стальных подземных газопроводов (см., например, РД 12-411-01).
В области, приближающейся к В5, процессы смещения границ между доменами и вращения векторов их намагниченности заканчиваются, и дальнейшее незначительное увеличение В5 происходит за счет поворота магнитных моментов атомов под действием магнитного поля. В качестве первичных информативных параметров при магнитном неразрушающем контроле чаще всего используют Вs, Вr и Нс. Магнитные преобразователи В подавляющем большинстве случаев при магнитном контроле приходится иметь дело с измерением или индикацией магнитных полей вблизи поверхности изделий. Для этого применяют различные магнитные преобразователи [2], из которых наиболее широкое распространение получили индукционные, феррозондовые, холловские и магниторезисторные. В магнитолорошковых и магнитографических установках применяют различные порошки и ленты. Индукционные преобразователи. Принцип действия индукционного преобразователя основан на возникновении ЭДС, наведенной в замкнутом контуре, пропорциональной изменению во времени сцепления этого контура с магнитным потоком (магнитный поток равен произведению напряженности поля Н на площадь поверхности, перпендикулярной вектору Н. Величина Н в пределах площади S может быть как постоянной (однородной), так и переменной). Простейший пассивный индукционный преобразователь представляет собой катушку (контур) с числом витков № w. При помещении катушки в переменное магнитное поле на ее концах возникает мгновенная электродвижущая сила, определяемая по формуле
Где - изменение сцепления магнитного потока за малый промежуток времени dt. Полный магнитный поток, проходящий через катушку:
Где S – площадь катушки; - угол между осью катушки и вектором магнитной индукции B. Отсюда Из последней формулы следует, что для повышения чувствительности измерения можно увеличить число витков или площадь катушки. Однако размеры катушки должны быть достаточно малы чтобы магнитное поле в ней можно было считать однородным и не утратить точность измерений. Поэтому такие катушки наматывают тонким проводом в один слой, чтобы можно было пренебречь толщиной намотки по сравнению с диаметром катушки. В слабых полях для увеличения ЭДС внутри катушки помещают ферромагнитный сердечник для увеличения магнитной индукции В.
Вместе с тем при отсутствии градиента напряженности магнитного поля (при dН/dt = 0), т. е. для постоянных и однородных полей, пассивные индукционные преобразователи не могут быть использованы. Феррозонды. В отличие от пассивных индукционных преобразователей феррозондовые преобразователи (феррозонды) являются устройствами активного типа. Происходящие в них процессы всегда связаны с воздействием двух полей - внешнего измеряемого поля и дополнительного вспомогательного поля возбуждения, образуемого за счет тока, протекающего в одной из обмоток. Простейший феррозонд состоит из сердечника с двумя обмотками - возбуждения и индикаторной. Схема такого феррозонда аналогична схеме накладного трансформаторного вихретокового преобразователя (см. рис. 8.1). С помощью первой обмотки создается поле возбуждения Hи(t), в сердечнике возникает индукция В(t), которая индуцирует магнитную ЭДС:
Где wи – число витков измерительной обмотки; S – площадь сердечника.
Выбором размеров сердечника и максимальной напряженности поля возбуждения добиваются необходимой чувствительности либо необходимого диапазона измеряемых полей. При импульсном возбуждении возбуждение и индикацию можно осуществить одной обмоткой. Существуют феррозонды различных типов и модификаций, отличающиеся количеством и расположением обмоток и конструкцией сердечника. Магнитодоменные преобразователи. Действие магнитодоменных преобразователей основано на магнитооптическом эффекте Фарадея. Преобразователь представляет собой однородную магнитную среду определенной толщины, в которой существуют доменно-одно-родные области, обладающие одинаковой намагниченностью. В качестве такой среды применяют феррит-гранатовую пленку с зеркальной подложкой. Информативным параметром магнитоломенного преобразователя является видимое изображение доменной структуры на пленке. В исходном размагниченном состоянии домены на пленке располагаются хаотично. При размещении пленки на поверхности контролируемого изделия из ферромагнитного материала домены перемещаются в плоскости пленки в зависимости от магнитного поля рассеяния, создаваемого дефектами. Топография доменной структуры пленки визуализируется с помощью оптической установки под увеличением при подсветке пленки плоскополяризованным светом. В настоящее время магнитодоменные преобразователи находят пока ограниченное применение. Датчики Холла. Датчики Холла, которые иногда называют преобразователями или генераторами Холла, работают по принципу возникновения ЭДС в результате искривления пути носителей тока в металлах и полупроводниках. В 1879 г. американский физик Эдвин Г. Холл обнаружил, что в плоском проводнике, по которому в продольном направлении идет электрический ток, помещенном в магнитное поле, направление индукции которого перпендикулярно плоскости проводника, возникает разность потенциалов на его узких сторонах в точках Л и В (рис. 7.3). Эффект Холла объясняется действием силы Лоренца, возникающей при движении заряда в магнитном поле и направленной перпендикулярно векторам движения заряда и индукции магнитного поля. Напряжение между точками А и В (на выходе датчика на рис. 7.1) определяют по формуле
Где Rн – постоянная материала, известная как постоянная Холла, Ом м/Тл; Ix – управляющий ток, А; Bz – магнитная индукция, Тл; h – толщина пластины датчика, м. Рис. 7.3. Схема работы датчика Холла
Для изготовления датчиков Холла применяют обычно полупроводники, где величина Rн имеет максимальную величину. Отечественная промышленность серийно выпускает кремниевые, германиевые и арсенид-галлиевые преобразователи Холла. Конструктивно датчики Холла представляют собой пластины прямоугольной или крестообразной формы. Толщина пластин около 0,2 мм, размеры активной части от 1,8 6 до 6 3 мм. Пластины помещают в защитную оболочку из слюды, при этом их габаритные размеры увеличиваются примерно вдвое. Магниторезисторы. В магниторезисторах используется эффект изменения сопротивления проводника или полупроводника с электрическим током при действии на них магнитного поля соответствующей напряженности. Таким эффектом обладает ряд материалов: антимонид и арсенид индия и галлия (InSb, InAs, GаSb, GaAs), германий (Gе), висмут (Вi, теллур (Те), селенид ртути (НgSе) и др. Чувствительность по напряжению магниторезисторов к слабым магнитным полям меньше, чем у датчиков Холла, поэтому их чаще используют при измерении сильных магнитных полей с индукцией свыше 0,2 Тл. Магнитные порошки. Магнитные порошки используют для визуализации магнитных полей рассеяния на поверхности контролируемого объекта в зоне дефектов. На частицу ферромагнитного порошка, помещенного в такое поле, будет действовать сила, удерживающая его в зоне дефекта. Эта сила прямо пропорциональна градиенту напряженности dH/dx магнитного поля рассеяния:
где - магнитная восприимчивость материала порошка; V — объем частицы порошка. Во внешнем намагничивающем поле частицы порошка существуют не изолированно, а коагулируются и образуют цепочки, что соответственно увеличивает удерживающую силу F. Длина цепочки определяется рядом факторов: вязкостью порошка и размером его частиц, напряженностью магнитного поля, шероховатостью поверхности объекта контроля и др. Магнитные порошки, используемые в магнитопорошковой дефектоскопии, могут быть как сухие, так и мокрые, работающие в водной среде, среде керосина или масла с минимальной вязкостью. Для повышения подвижности частиц порошка и чувствительности магнитопорошкового метода применяют магнитные суспензии, представляющие собой взвесь тонкоизмельченного порошка (0,1...60 мкм) в жидкой среде. Магнитные порошки подразделяются на виды в зависимости от их назначения и технологии изготовления. Наибольшее распространение нашли черный порошок измельченной окись-закиси железа (Fе3О4) и буровато-красный порошок гамма-окиси железа ( -Fе2О3), обладающий большим цветовым контрастом на поверхности объекта контроля. Для повышения цветового контраста в магнитный порошок добавляют или люминофор (контроль в этом случае производится при ультрафиолетовом излучении) или светлую алюминиевую пудру (при контроле объектов с темной поверхностью). Магнитные ленты. Магнитные ленты применяют в магнитографической дефектоскопии. Ленты бывают одно- и многослойными. Чаще применяют двухслойные ленты, состоящие из несущей немагнитной основы (лавсан, ацетилцеллюлоза и др.) и магнитоактивного слоя в виде порошков окиси железа, взвешенного в лаке, обеспечивающего хорошую адгезию с основой. Магнитные ленты выпускают шириной 50 и 75 мм и применяют при контроле стыковых сварных соединений. Воспроизведение записанных на ленте магнитных полей рассеяния осуществляют с помощью магнитографических дефектоскопов. С помощью блока считывания дефектоскопа, состоящего из двух магнитных головок (типа магнитофонных), записанная на ленте информация преобразуется в электрические сигналы, которые поступают в электронный блок для усиления и селекции. Визуализация записи производится с помощью электронно-лучевой трубки, на экране которой получается видимое (телевизионное) изображение дефекта.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|