Дефектоскопия стальных канатов
Подъемные устройства различных типов применяют на большинстве объектов нефтегазовой промышленности в качестве основного и вспомогательного оборудования. Основным видом гибких грузовых элементов подъемных устройств являются стальные канаты. Магнитный неразрушающий контроль в последние годы все более широко начинает применяться для дефектоскопии таких канатов, изготовленных из ферромагнитных материалов. Та же аппаратура может быть использована и для контроля длинных стержневых деталей, например таких, как штанги глубинных насосов. Принцип магнитной дефектоскопии основан на оценке магнитного потока вдоль участка каната и регистрации изменений в его распределении. Эти изменения могут быть обусловлены рядом причин: изменением площади поперечного сечения каната, наличием обрывов проволок, изменением магнитных свойств материала проволок, например из-за локального термического воздействия, приводящего к изменению структуры металла. Дефектоскопию стальных канатов осуществляют с использованием переменного или постоянного магнитного поля (РД 03-348—00 «Методические указания по магнитной дефектоскопии стальных канатов»). При использовании переменного магнитного поля магнитный поток вдоль продольной оси участка контролируемого каната создают посредством возбуждающей индуктивной катушки с переменным током, охватывающей канат. Измерительная катушка также охватывает канат и в ней индуцируется ЭДС, зависящая от площади поперечного сечения каната по металлу. Метод переменного магнитного поля используют, как правило, только для измерения потери сечения каната. Метод постоянного магнитного поля используют как для измерения потери сечения каната, так и для обнаружения локальных дефектов. Постоянный магнитный поток вдоль продольной оси участка контролируемого каната создают постоянными магнитами или электромагнитами постоянного тока. Общий магнитный поток, создаваемый постоянными магнитами или электромагнитом (часть этого потока), измеряют датчиками Холла либо другими датчиками, пригодными для измерения абсолютного значения магнитного потока или изменений этого потока. Сигнал датчиков зависит от магнитного потока, проходящего через участок контролируемого каната и, следовательно, от поперечного сечения этого участка по металлу.
Локальные дефекты каната, например обрывы проволок, создают вблизи дефектов магнитные потоки рассеяния, которые регистрируются датчиками Холла, катушками или другими магниточувствительными элементами. Сигналы датчиков зависят не только от размеров локальных дефектов, но и от их типа и положения, поэтому определить количественно параметры дефектов обычно затруднительно. Качественный анализ полученной информации о локальных дефектах выполняют по дефектограммам на основании накопленного опыта. В различных странах мира в настоящее время выпускается около 15 моделей канатных дефектоскопов. В России выпускаются две модели: УДК-3 (изготовляется в Екатеринбурге) и «Интрос» (изготовляется в Москве). По мнению автора, наиболее совершенной моделью из всех известных в мировой практике является российский дефектоскоп «Интрос». Дефектоскоп «Интрос» состоит из электронного блока (ЭБ) и магнитной головки (МГ) со сменным блоком датчиков (БД). К ЭБ может быть подключена любая МГ для контроля соответственно круглых и плоских стальных, а также резинотросовых канатов. Одновременно к ЭБ может быть подключена только одна МГ. Принципиальная схема магнитной головки для круглых канатов с блоком датчиков представлена на рис. 7.7.
Магнитная система МГ намагничивает участок контролируемого каната. Магнитные поля рассеяния, вызванные дефектами каната, создают на выходе блока датчиков электрический сигнал, который после усиления и преобразования в цифровую форму обрабатывается в микропроцессоре. В микропроцессор поступают также импульсы со счетчика метража. Получаемая информация запоминается и выводится на световой индикатор ЭБ, а также может быть передана на внешний компьютер для хранения, обработки и последующего анализа. Конструктивно МГ выполнена в виде постоянного разъемного магнита вместе со съемными БД. МГ рассчитана таким образом, что контролируемый канат предварительно промагничивается до насыщения (точка В„ на рис. 7.2). При износе каната и уменьшении его диаметра параметры петли гистерезиса и величина Вя также уменьшаются. Изменение величины индукции В измеряется датчиками Холла, установленными в БД. Магнитный поток, проходящий через канат, при уменьшении сечения каната уменьшается, а по воздуху— увеличивается, так как напряженность поля постоянных магнитов МГ остается неизменной. Датчики Холла измеряют магнитный поток Фо, а также тангенциальную составляющую потока рас сеяния ФД над локальным дефектом в канате. Получаемая с блока датчиков информация записывается по двум каналам: каналу потери сечения (ПС) и каналу локальных дефектов (ЛД). Обработка на компьютере и анализ полученных дефектограмм позволяют оценить как общую потерю сечения каната, так и наличие локальных дефектов (обрывов проволоки) как на поверхности, так и внутри каната. Примеры дефектограмм приведены на рис 7.8.
Рис. 7.7. Схема магнитной головки дефектоскопа «Интрос» для круглых канатов: 1 — счетчик метража; 2 — магнитная головка; 3 — локальный дефект; 4 — блоки датчиков; 5 — канат
Дефекгограмма ПС, %
Расстояние, м Рис. 7.8. Примеры дефектограмм по каналам ПС и ЛД
Наиболее сложной задачей в области дефектоскопии стальных канатов является контроль их состояния в местах заделки в муфты (рис. 7.9), где часто возникает интенсивная коррозия проволок. Основных причин этого явления несколько. Во-первых, перед заливкой муфт легкоплавким сплавом (цинк, баббит и др.) концевой участок каната подвергается травлению кислотой и нанесению флюса на его основе. Во-вторых, часть каната, выходящая из муфты, длиной 5... 10 см обвязывается мягкой проволокой, задерживающей пыль и влагу.
Рис. 7.9. Контроль каната в месте заделки в муфту дефектоскопом «Интрос»: 1 — электронный блок (ЭБ), 2 — магнитная головка (МГ), 3 — муфта. Основной проблемой контроля каната в зонах заделки является влияние массивной муфты и сопутствующих элементов (натяжных болтов и др.) на величину магнитного потока, измеряемого прибором. Эту проблему удалось решить с использованием специальной методики обработки дефектограмм, разработанной ООО «Интрон Плюс» с участием инженерного центра АГТУ [20]. Метод магнитной памяти Методом намагниченности по ГОСТ 18353-79 (см. табл. 1,2) называют метод, основанный на регистрации намагниченности контролируемого объекта. В технической литературе данный метод часто называют магнитометрическим, так как при этом измеряются параметры магнитного поля объекта и осуществляется их последующий анализ. Наиболее широко данный метод применяется при поиске трасс подземных трубопроводов, для выявления магнитных аномалий трубопроводов и их бесконтактной диагностики, а также при выполнении экспресс-диагностики локальных участков некоторых видов технологического оборудования. Технология магнитометрического контроля трубопроводов подробно изложена, например в разработанном НТ1Д «Транскор-К» РД 102-008-2002 «Инструкция по диагностике технического состояния трубопроводов бесконтактным магнитометрическим методом». Для экспресс-диагностики локальных участков оборудования наибольшее распространение нашел так называемый метод магнитной памяти металла (ММТГ). На самом деле магнитной памятью металлов называется физический эффект, связанный с восстановлением предварительно деформированного образца, а метод ММП к данному эффекту никакого отношения не имеет.
Методом магнитной памяти металла называют метод неразру-шающего контроля, основанный на регистрации распределения остаточной намагниченности металла в зоне дефекта (зоне высокого магнитного сопротивления), возникающей под действием технологических и эксплуатационных факторов. В ряде литературных источников этот метод называется магнитометрическим. Метод позволяет по характеру распределения поля остаточной намагниченности на поверхности изделия выявить потенциально опасные участки конструкции на стадии предразрушения и разрушения в виде линий и зон концентрации напряжений, деформаций и поверхностных трещин. Впервые этот метод открыл и использовал на Волгоградской ГЭС В.М. Филимонов [12]. Он обнаружил, что нержавеющие трубы выходят из строя намагниченными. В зоне концентрации напряжений возникают поля рассеяния, которые можно обнаружить с помощью магнитометра. В дальнейшем метод получил широкое распространение благодаря работам А.А. Дубова [6]. Намагничивание ферромагнетиков может происходить не только под действием специально созданного внешнего намагничивающего поля или сформироваться под действием технологических, конструкционных и эксплуатационных факторов, но и произойти в естественных условиях под действием магнитного поля Земли. Это поле имеет весьма малую напряженность, поэтому намагничивание происходит в течение длительного периода времени, при этом изделие должно быть неподвижным относительно направленности поля. Изделия, перемещающиеся в пространстве в разных направлениях, естественным магнитным полем Земли не намагничиваются. Наиболее сильно этот эффект проявляется в протяженных трубопроводах, которые намагничиваются до такой степени, что при сварке трубопроводов возникает значительное отклонение электрической дуги («магнитное дутье»), что существенно затрудняет процесс сварки. Магнитная память металла проявляется в необратимом изменении его намагниченности в направлении действия максимальных напряжений от рабочих нагрузок в процессе эксплуатации изделия. Установлено, что в зонах концентрации напряжений изделий, намагнитившихся в естественном магнитном поле Земли, где под действием эксплуатационных нагрузок происходит интенсивное перемещение дислокаций, зарождение и развитие микротрещин, предшествующих разрушению, магнитное сопротивление растет, а характер поля остаточной намагниченности резко изменяется. Нормальная составляющая Нр напряженности поля остаточной намагниченности скачкообразно меняет знак, при этом в центре зоны (на линии) концентрации напряжений (КН) Нр = 0, а касательная составляющая Н, напряженности максимальна. Аналогичный эффект имеет место и при наличии поверхностных деформаций и трещин.
Распределение магнитного потока в зоне КН (зоне высокого магнитного сопротивления) аналогично приведенному на рис. 7.4, а характер изменения нормальной и касательной составляющих показан на рис. 7.10. Вдоль линии КН нередко происходит повышение твердости металла. Металлографические исследования в этом случае выявляют повреждения структуры металла в той или иной степени. Значение нормальной составляющей Нр — 0, и ее скачкообразное изменение более точно определяет положение зоны КН, и в действующей нормативной документации с применением ММП принимается основным диагностическим признаком. Природа изменения характера поля Нр в зонах КН на сегодняшний день изучена недостаточно. Предполагается, что при перемещении дислокаций и возникновении пластических деформации за счет магнитоупругого и магнитомеханического эффектов в зонах КН одновременно происходит и разворот доменов, что приводит к изменению поля остаточной намагниченности. В местах наибольшей концентрации дефектов и неоднородностей структуры образуются узлы закрепления доменных стенок с выходом на поверхность в виде линий смены знака поля Нр [6]. При этом линия Нр = 0 соответствует сечению детали с максимальным магнитным сопротивлением.
Рис 7.10 Характер распределения составляющих поля остаточной намагниченности в зоне концентрации напряжений Такое распределение поля остаточной намагниченности в нагруженных конструкциях формируется только в малом внешнем поле, каким является магнитное поле Земли, когда энергия деформации намного превосходит энергию внешнего магнитного поля. Характер распределения поля Нр можно оценить или с помощью универсальных магнитометров, или с помощью специализированных магнитометров-индикаторов напряжений типа ИКН-1М, выпускаемых НПО «Энергодиагностика» (г. Реутов Московской обл.). Дополнительно для количественной оценки уровня концентрации определяется градиент (интенсивность изменения) Кин нормальной составляющей остаточного магнитного поля при переходе через линию концентрации напряжений Нр = 0: Где – модуль разности поля между двумя точками контроля, расположенными на равных отрезках lk по обе стороны от линии Hp=0. При этом отрезки lk расположены перпендикулярно линии Hp=0, что обусловлено их совпадением с направлением главных (максимальных) растягивающих или сжимающих напряжений. По величине градиента напряженности магнитного поля можно судить о степени опасности возникших в объекте дефектов или концентрации напряжений. Определяют максимальное и среднее значения всех зон КН, выявленных при контроле объекта. Далее выявляют зоны КН с самыми большими значениями и вычисляют отношение m: m= / .
Если т превышает mпр, то делается вывод о предельном состоянии металла, предшествующем повреждению объекта контроля. Величина тпр характеризует деформационную способность металла на стадии упрочнения перед разрушением и определяется по специальной методике. Наиболее опасными элементами современных промысловых и магистральных трубопроводов и нефтехранилищ являются их сварные соединения. Наряду с остаточными термическими напряжениями после сварки в швах могут образоваться различные технологические дефекты (непровары, подрезы, газовые поры, шлаковые включения и др.), создающие условия для возникновения концентрации напряжений. В дополнение к сложным статическим и циклическим эксплуатационным нагрузкам (под действием собственного веса и технологической среды, тепловых расширений, цикличности рабочего давления и температуры, неравномерности распределения температуры и воздействия коррозии и т.д.) могут действовать неучтенные нагрузки, например из-за нарушения расчетного состояния опорно-подвесной системы, защемления отдельных участков конструкции, просадки фундамента и т. п. В результате прежде всего в сварных соединениях возникают повреждения, которые развиваются по механизму усталости, ползучести, коррозии, дисперсионного охрупчивания при повторном нагреве, водородного охрупчивания. По трудоемкости ММП-контроль относится к экспресс-методам, что позволяет резко увеличить объем проконтролированных участков трубопроводов и нефтехранилищ и прежде всего их сварных соединений. Основная задача ММП-контроля — определение на объекте контроля наиболее опасных участков и узлов, характеризующихся зонами КН. Затем с помощью других методов неразрушающего контроля (например, ультразвукового или рентгеновского) в зонах КН определяется наличие конкретного дефекта. Основные преимущества нового метода неразрушающего контроля по сравнению с известными методами следующие: • не требует применения специальных намагничивающих устройств, так как используется явление намагничивания металла сосудов и трубопроводов под действием рабочих нагрузок в магнитном поле Земли; • места концентрации напряжений заранее не известны и определяются в процессе контроля; • не требует зачистки металла и другой какой-либо подготовки контролируемой поверхности; • для выполнения контроля используются приборы, имеющие Малые габариты, автономное питание и регистрирующие устройства. Факторами, ограничивающими применение метода ММП, являются: • искусственная намагниченность металла; • постороннее ферромагнитное изделие на объекте контроля; • наличие вблизи (ближе 1 м) объекта контроля источника • перемещение объекта контроля в пространстве относительно Магнитная структуроскопия Все изменения в структуре материала в процессе его изготовления, обработки, зарождения и развития повреждений отражаются в соответствующих изменениях магнитных и электрофизических параметров. Появление этих изменений объясняется разворотом и перемещением доменов и междоменных границ, составляющих в совокупности доменную структуру материала. В основу методов магнитной структуроскопии положена корреляция между некоторыми магнитными и физико-механическими свойствами материалов, когда они одновременно зависят от одних и тех же факторов: химического состава, режима термообработки, напряженного состояния, накопления усталостных повреждений и др. По использованным магнитным информативным параметрам различают следующие раз-новидности магнитной структуроскопии: • ферритометрия; • коэрцитиметрия; • контроль по остаточной намагниченности; • контроль по магнитной проницаемости; • контроль по магнитным шумам. Наибольшее распространение нашли две первые разновидности магнитной структуроскопии. Ферритометрия применяется для контроля ферритной фазы, повышенное содержание которой снижает трещиностойкость сталей и особенно сварных соединений. Содержание этой фазы определяет магнитную проницаемость материала, поэтому для ее определения измеряют магнитное сопротивление. Измерительным элементом ферритометра является одно- или двухполюсный феррозондовый магнитный преобразователь, содержащий возбуждающую и измерительную катушки. Магнитный поток, создаваемый возбуждающей катушкой феррозонда, зависит от магнитного сопротивления участка объекта контроля, определяемого содержанием ферритной фазы. Поэтому ее величину оценивают по ЭДС, наведенной при этом в измерительной катушке. Градуировка ферритометров производится по эталонным образцам с известным содержанием ферритной фазы. Большую погрешность при измерении может внести изменение зазора между преобразователем и поверхностью объекта контроля, а также геометрия этой поверхности (край, кривизна). Наиболее широко в структуроскопии используется зависимость между твердостью углеродистых и низколегированных сталей и их силой. Твердость в свою очередь определяется температурой закалки и отпуска, что позволяет использовать коэрцитивную силу для контроля режимов термообработки стали. В последние годы коэрцитиметрия стала широко применяться для контроля напряженного состояния металлоконструкций опасных производственных объектов различного назначения, что является весьма актуальным для технической диагностики. Так, ЗАО «ИКЦ КРАН» (г. Москва) совместно с научно-производственной фирмой «Специальные научные разработки» (г. Харьков, Украина) под руководством Б.Е. Попова разработали методику, создали аппаратуру и подготовили согласованный с Госгортехнадзором РФ нормативный документ: РД ИКЦ «КРАН» 009-99 «Магнитный контроль напряженно-деформированного состояния и остаточного ресурса сосудов, работающих под давлением, при проведении экспертизы промышленной безопасности». Данная методика позволяет по величине коэрцитивной силы Нс определить действующие напряжения в упруго-пластической области, степень деформации и остаточный ресурс металлоконструкций при циклическом нагружении. Установлено, что микро- и макродефекты структуры углеродистых и малолегированных сталей, накапливаясь в процессе циклического нагружения, как бы собирают и хранят информацию, однозначно связанную с максимальными величинами действовавших нагрузок, в результате чего структура доменов выполняет функции магнитной памяти повреж-денности металла. Согласно теории Е.И. Кондорского, изменения внутренних напряжений и связанная с ними деформация материала , вызывают смещение доменных границ и необратимое намагничивание, характеризуемое пропорциональными изменениямикоэрцитивной силы , Где – изменение линейных размеров – магнитострикция; - абсолютная магнитная проницаемость; - намагниченность; - среднее значение амплитуды внутренних напряжений; - толщина границы доменов; L - длина волны напряжения в металле.
Коэрцитивная сила Hс, представляющая собой напряженность Магнитного поля, необходимая для уменьшения намагниченности До нуля, является более информативным параметром, так как связана с магнитной энергией и внутренним полем анизотропии, различным для каждого типа стали. Величина Нс наряду с начальным и приложенным напряжениями определяется тонкой структурой металла и зависит от химического и фазового состава, размера зерна, плотности дислокаций, внутренних напряжений и дислокаций. При наличии корреляционной зависимости между Нс и остаточной пластической деформацией Епл по величине коэрцитивной силы можно вести контроль накопления упругопластических деформаций и повреждений в металле, а также усталостной прочности конструкций. Практически все виды традиционных низкоуглеродистых и малолегированных сталей, применяемые для изготовления объектов котлонадзора, а в равной степени и для объектов нефтегазовой промышленности, относятся к классу разупрочняемых, у которых значение Нс в состоянии поставки невысокое (2...6 А/см), а при эксплуатации текущая величина Нс возрастает до разрушения в 2—3 раза. Для таких сталей, как правило, существует устойчивая связь магнитных и механических свойств с коэффициентом корреляции не ниже 0,9. Для сталей типа СтЗ, Ст20, 09ГС2 и им подобных она может быть представлена линейной зависимостью вида Нс =Нс0 + AE где Нс0 — величина коэрцитивной силы в состоянии поставки; А — коэффициент, характерный для каждой марки стали; Е — деформация. Аналогичный вид имеет и зависимость Нс(). По результатам статических испытаний образцов при растяжении и статистического анализа оформляются номограммы для контроля напряжений по величине коэрцитивной силы (рис. 7.11).
12 Не, А/см
Рис. 7.11. Номограммы для контроля по коэрцитивной силе напряжений при одноосном растяжении плоских образцов из конструкционных сталей
Номограммы в виде линейных зависимостей Нс() позволяют оперативно вычислить максимальные действующие напряжения с погрешностью около 5 % и выявить места с наибольшей концентрацией напряжений в элементах металлоконструкций.
Рис. 7.12. Измерение коэрцитивной силы на плоских образцах из сталей СтЗ, Ст20 и 09Г2С при испытании на растяжение непосредственно под нагрузкой и после разгрузки на каждой ступени нагружения
Для всех типов конструкционных сталей могут быть построены также свои экспериментальные зависимости между коэрцитивной силой и максимальными действующими напряжениями а или деформациями Е в процессе ступенчатого нагружения с последующей разгрузкой (рис. 7.12). На примере сталей СтЗ, Ст20, 09Г2С видно, что после разгрузки величина Нс остается постоянной, равной исходной Нс0, вплоть до достижения предела текучести металла . В области течения и разупрочнения металла начинается необратимая перестройка доменной структуры за счет разворота на 90 и 180° доменных границ. После перехода в упруго-пластическую область Нс линейно возрастает до значения Нсв, соответствующего пределу прочности металла бв. Под нагрузкой величина Не растет сразу после начала нагружения до величины НсТ, соответствующей пределу текучести металла т. А после небольшой площадки или зуба текучести при повышении нагрузки в области необратимых деформаций рост Нс продолжается одновременно с формированием новой доменной структуры и активным накоплением повреждений в металле вплоть до значения Нсв, при котором происходит разрушение металла. После образования и раскрытия магистральной трещины происходит частичное снятие напряжений в зоне развития трещин и снижение Нс. Максимальное значение Нс в соответствует пределу прочности металла в. Таким образом, энергия, затрачиваемая на работу разрушения Металла, и максимальное значение Нсв как при измерении непосредственно под нагрузкой, так и после разгрузки на каждой ступени нагружения практически одинаковы. В случае если стальной образец до испытаний имел остаточные напряжения сжатия (например, после обкатки), то при растяжении Нс сначала снижается до Hс0, а затем растет по механизму, описанному выше. Аналогичный процесс может наблюдаться и в трубах, прошедших экспандирование при изготовлении. Структурные и магнитные превращения здесь связаны со снятием напряжения одного знака и формированием доменной структуры под действием напряжения обратного знака. Энергетический подход правомерен и при анализе усталостного разрушения магнитным методом. Запас энергии, затрачиваемой на накопление повреждений и разрушение, примерно одинаков для данных марок сталей как при статическом, так и циклическом нагружениях, т. е. Нсв ~ Нсуст. Величина Нс определяется векторной суммой действующих напряжений первого, второго и третьего родов. Поэтому при магнитном контроле напряженно-деформированного состояния металлоконструкций необходимо учитывать не только абсолютные значения напряжений, но и их направление по отношению к расположению магнитных силовых линий в месте контроля. Напряжения третьего рода определяются структурой и химическим составом металла. Напряжения второго рода являются начальными и формируются при изготовлении конструкции. Они увеличивают коэрцитивную силу и образуют в металле поля остаточных напряжений определенного знака. Напряжения первого рода обусловлены воздействием эксплуатационных нагрузок. Эти напряжения, накладываясь на предыдущие, могут как уменьшать, так и увеличивать Нс в области упругих деформаций в зависимости от направления действия последних. Однако при переходе в упругопластическую область напряжения первого рода оказывают преобладающее влияние, и под их действием коэрцитивная сила возрастает по закону, близкому к линейному, вплоть до Нсв, соответствующей пределу прочности данного материала. Для измерения коэрцитивной силы используют коэрцитиметры с приставным электромагнитом. Ранее в течение ряда лет отечественной промышленностью серийно выпускался коэрцитиметр КИФМ-1, включающий приставной электромагнит с феррозондовым преобразователем. С 1998 г. МНПО «Спектр» (г. Москва) совместно с научно-производственной фирмой «Специальные научные разработки» приступили к серийному выпуску цифрового полуавтоматического структуроскопа-коэрцитиметра КРМ-ЦК-2, в приставном П-образном электромагните которого использован в качестве магнитного преобразователя датчик Холла. Схема приставного электромагнита приведена на рис. 7.13. Модель КРМ-ЦК-2 имеет автономное питание — портативный аккумулятор, выполненный заодно с измерительным блоком, поэтому его можно использовать при диагностировании различных объектов как в полевых, так и во взрывопожароопасных условиях. Принцип
Рис. 7.13. Схема приставного П-образного электромагнита: 1-электромагнит, 2-Датчик Холла
действия прибора основан на вычислении коэрцитивной силы по измеряемому току компенсации остаточной магнитной индукции в замкнутой магнитной цепи, составленной из магнитол ров ода приставного электромагнита и контролируемого изделия. Цикл измерений включает этапы: намагничивание контролируемого изделия; компенсация остаточной намагниченности; вычисление коэрцитивной силы; индикация результатов измерения. Намагничивание осуществляется путем пропускания импульсов постоянного тока по обмотке возбуждения приставного электромагнита (см. рис. 7.13). При этом участок изделия между полюсными наконечниками промагничивается до насыщения. После выключения тока в обмотке в магнитной цепи электромагнита за счет остаточной индукции контролируемого изделия существует остаточный магнитный поток, создающий сигнал на выходе датчика Холла. Далее осуществляется автоматическая компенсация остаточной намагниченности путем пропускания по обмотке тока противоположного направления. Ток компенсации увеличивается до тех пор, пока магнитный поток в цепи не станет равным нулю. Этому состоянию соответствует отсутствие выходного сигнала на датчике Холла, т. е. датчик Холла играет роль нуль-индикатора. Чем больше величина Нс тем больше должен быть размагничивающийся ток компенсации. По величине тока компенсации магнитного поля вычисляется значение коэрцитивной силы, после чего происходит включение цифровой индикации величины коэрцитивной силы на табло передней стенки прибора. Для оценки напряженно-деформированного состояния металлоконструкций контролируемого объекта при его диагностировании достаточно провести анализ распределения величины Нс по поверхности объекта, выявить наиболее нагруженные элементы (Нcmax) и сравнить эти значения с НсТ или Нсв, соответствующими пределам текучести и прочности металла, из которого изготовлен объект. Если металл объекта работает в упругой или упруго-пластической области, то значения Нс пересчитывают по номограммам для данной марки стали в напряжения б и сравнивают их с допустимыми ( доп), полученными при расчете на прочность. В качестве примера на рис. 7.14 (прил. 3 РД ИКЦ «КРАН» 009-99) приведены результаты контроля сосудов-воздухосборников В-10, Широко применяемых на различных промышленных объектах, в том числе и в нефтегазовой отрасли. Контролировалось два воздухосборника, изготовленных из стали СтЗсп и отработавших по 25 лет при среднем давлении соответственно ~ 0,6 и ~ 0,8 МПа. Величина Нс измерялась в двух взаимно перпендикулярных направлениях X и У вдоль линии контроля в точках 0—16. Для наглядности и удобства анализа коэрцитивная сила Нсх в направлении X и кольцевые напряжения ах откладывались слева по оси X, а аналогичные параметры Нсу и у - справа по оси У.
Рис. 7.14. Результаты контроля коэрцитивной силы и напряженного состояния воздухосборника
Допускаемые напряжения в стенке воздухосборника составляли доп = 140 МПа, фактические напряжения в различных точках определялись по номограмме, приведенной на рис. 7.11. Из анализа рис. 7.14 следует, что максимальные напряжения возникают в зонах сварных соединений элементов обечайки между собой, а также с крышкой и основанием воздухосборников. Величина максимальных напряжений для воздухосборника, работавшего под давлением 0,8 МПа, в этих зонах превышает величину допускаемых напряжений, а коэрцитивная сила Нсу в точке 1 выше величины Нct = 5,3 А/см, соответствующей пределу текучести для стали СтЗсп. Аналогичные параметры для воздухосборника, работавшего под давлением 0,6 МПа, значительно ниже, что позволяет эксплуатировать его и далее без каких-либо ограничений. Важным преимуществом коэрцитиметрического метода является его простота, недостатками — ограниченность круга решаемых задач и видов ферромагнитных материалов. Также отсутствуют данные о возможности использования этого метода для контроля непосредственно сварных швов, являющихся, как правило, наиболее слабым звеном металлоконструкций технологического оборудования. Разрушение металлоконструкций всегда происходит по наиболее нагруженной зоне с максимальным уровнем действующих напряжений. Наличие в такой зоне концентратора напряжений резко усугубляет ситуацию. В окрестности концентраторов напряжений многократно ускоряются процессы ползучести и усталости металла, поэтому их своевременное выявление имеет первостепенное значение. Условиями разрушения металлической конструкции, изготовленной из конструкционной стали, является величина максимальных напряжений в зоне концентратора (КМН) и высокий градиент разности главных механических напряжений (РГМН). Из сопротивления материалов известно, что для упруговязких конструкционных сталей наиболее точным является третий критерий прочности (критерий Треска), согласно которому необходимым условием трещины является
Где – касательные напряжения; - разность главных механических напряжений; - допустимые касательные напряжения (принимаются равными пределу текучести металла).
Другими словами, для надежной оценки текущего технического состояния конструкции помимо КМН необходимо знание градиента РГМН. Известно, что под действием механических напряжений и деформаций магнитные свойства материалов изменяются неравномерно. Структура металла в зоне концентраторов напряжений и направление вектора намагниченности отличаются от соседних зон. Это изменение можно выявить с помощью метода неразрушающего контроля, основанного на магнитомеханической анизотропии металла. Наиболее общей характеристикой магнитных свойств металла при заданном напряженно-деформированном состоянии является нредельная петля гистерезиса (см. рис. 7.2), параметры которой определяются индукцией Вs и напряженностью Нmax магнитного поля насыщения, остаточной индукцией Вr и коэрцитивной силой Нс. Однозначно установить функциональную зависимость между каким-то отдельным параметром петли гистерезиса и напряженно-деформированным состоянием конструкции, изготовленной из ферромагнитного материала, как показывает теория магнитного контроля, не удается. Связь между этими параметрами определяется корреляционными зависимостями с определенной достоверностью. Исследованиями Института проблем технической диагностики и Неразрушающих методов испытаний «ДИМЕНСтест» (г. Санкт-Петербург) установлено, что распределение различий в напряженном состоянии на поверхности конструкции функционально связано c комплексом параметров соответствующих петель магнитного гистерезиса. Измерение ряда параметров петли гистерезиса резко повышает достоверность распознавания. Кроме того, одновременно измеряется угол поворота вектора магнитной индукции, определяемый зависимостью магнитной анизотропии металла от его напряженного состояния. Математическая обработка по соответствующему алгоритму результатов измерений перечисленных магнитных параметров позволяет установить фактическое распределение напряженного состояния на контролируемом участке конструкции, в том числе в сварных швах. Измерение магнитных параметров осуществляют с помощью прибора магнитоанизотропного сканера-дефектоскопа «Комплекс 2.05».Обработка результатов измерений на компьютере по специальной программе позволяет получить картограммы разности главных механических напряжений, концентраторов механических напряжений и областей пластических деформаций (ОПД). Опасные участки контролируемой поверхности содержат изображение форм КМН и линий изостресс (линий, равных РГМН) с указанием численных значений и знака напряжений (растягивающие «+», сжимающие «—»), что позволяет непосредственно по картограмме оценить степень опасности выявленных дефектов и, при необходимости, определить наиболее эффективные методы ремонтно-восстановительных работ. Дефектоскопом в общем случае называют прибор, предназначенный для обнаружения и измерения дефектов. В этом смысле прибор «Комплекс 2.05» не является дефектоскопом: по утверждению разработчиков, его следует отнести к новому классу средств технической диагностики. Не всякий дефект в виде разрыва сплошности или инородного включения создает местную КМН или высокий градиент РГМН. Если в зоне контроля этим прибором имеется дефект, не создающий возмущение поля напряжений и не являющийся концентратором напряжений, то данный дефект на картограммах РГМН и КМН не будет обозначен. Наличие таких дефектов не препятствует безопасной эксплуатации металлоконструкции. В то же время любой существенный концентратор напряжений в виде дефекта даже весьма малых размеров или дефекта, вообще не имеющего нарушения (разрыва) сплошности среды и не обнаруживаемого традиционными методами дефектоскопии, может быть выявлен на карте РГМН и КМН. К ним могут быть отнесены, например, такие опасные дефекты, как тонкие трещины, зарождающаяся межкристаллитная коррозия и др. Прибор «Комплекс 2.05» предназначен прежде всего для контре ля сварных соединений магистральных трубопроводов, резервуаров для хранения нефти и нефтепродуктов, сосудов под давлением и других объектов, имеющих развитую поверхность.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|