Уравнения однородной линии в стационарном режиме
Под первичными параметрами линии будем понимать сопротивление
Разность напряжений в начале и конце участка определяется падением напряжения на резистивном и индуктивном элементах, а изменение тока на участке равно сумме токов утечки и смещения через проводимость и емкость. Таким образом, по законам Кирхгофа или после сокращения на
Теорию цепей с распределенными параметрами в установившихся режимах будем рассматривать для случая синусоидального тока. Тогда полученные соотношения при Вводя комплексные величины и заменяя
где Продифференцировав (3) по х и подставив выражение
Характеристическое уравнение
откуда
Таким образом,
где Для тока согласно уравнению (3) можно записать
где Волновое сопротивление
Определяя
Аналогичное уравнение согласно (6) можно записать для тока. Слагаемые в правой части соотношения (7) можно трактовать как бегущие волны: первая движется и затухает в направлении возрастания х, вторая – убывания. Действительно, в фиксированный момент времени каждое из слагаемых представляет собой затухающую (вследствие потерь энергии) гармоническую функцию координаты х, а в фиксированной точке – синусоидальную функцию времени.
На рис. 2 представлена затухающая синусоида прямой волны для моментов времени
Продифференцировав (8) по времени, получим
Длиной волны
откуда и с учетом (9)
В соответствии с введенными понятиями прямой и обратной волн распределение напряжения вдоль линии в любой момент времени можно трактовать как результат наложения двух волн: прямой и обратной, - перемещающихся вдоль линии с одинаковой фазовой скоростью, но в противоположных направлениях:
где в соответствии с (5) Представление напряжения в виде суммы прямой и обратной волн согласно (10) означает, что положительные направления напряжения для обеих волн выбраны одинаково: от верхнего провод Аналогично для тока на основании (6) можно записать
где Положительные направления прямой и обратной волн тока в соответствии с (11) различны: положительное направление прямой волны совпадает с положительным направлением тока
На основании (10) и (11) для прямых и обратных волн напряжения и тока выполняется закон Ома
Рассмотрим теоретически важный случай бесконечно длинной однородной линии. Бесконечно длинная однородная линия. Согласованный режим работы В случае бесконечно длинной линии в выражениях (5) и (6) для напряжения и тока слагаемые, содержащие
На основании соотношений (12) можно сделать важный вывод, что для бесконечно длинной линии в любой ее точке, в том числе и на входе, отношение комплексов напряжения и тока есть постоянная величина, равная волновому сопротивлению:
Таким образом, если такую линию мысленно рассечь в любом месте и вместо откинутой бесконечно длинной части подключить сопротивление, численно равное волновому, то режим работы оставшегося участка конечной длины не изменится. Отсюда можно сделать два вывода: Уравнения бесконечно длинной линии распространяются на линию конечной длины, нагруженную на сопротивление, равное волновому. В этом случае также имеют место только прямые волны напряжения и тока. У линии, нагруженной на волновое сопротивление, входное сопротивление также равно волновому. Режим работы длинной линии, нагруженной на сопротивление, равное волновому, называется согласованным, а сама линия называется линией с согласованной нагрузкой. Отметим, что данный режим практически важен для передачи информации, поскольку характеризуется отсутствием отраженных (обратных) волн, обусловливающих помехи. Согласованная нагрузка полностью поглощает мощность волны, достигшей конца линии. Эта мощность называется натуральной. Поскольку в любом сечении согласованной линии сопротивление равно волновому, угол сдвига
откуда КПД линии и затухание
Как указывалось при рассмотрении четырехполюсников, единицей затухания является непер, соответствующий затуханию по мощности в
Литература
Контрольные вопросы и задачи
Ответ:
Ответ:
Ответ:
Ответ:
Лекция N 41 Линия без искажений Пусть сигнал, который требуется передать без искажений по линии, является периодическим, т.е. его можно разложить в ряд Фурье. Сигнал будет искажаться, если для составляющих его гармонических затухание и фазовая скорость различны, т.е. если последние являются функциями частоты. Таким образом, для отсутствия искажений, что очень важно, например, в линиях передачи информации, необходимо, чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием, поскольку только в этом случае, сложившись, они образуют в конце линии сигнал, подобный входному.
Идеальным в этом случае является так называемая линия без потерь, у которой сопротивление Действительно, в этом случае
т.е. независимо от частоты коэффициент затухания
Однако искажения могут отсутствовать и в линии с потерями. Условие передачи сигналов без искажения вытекает из совместного рассмотрения выражений для постоянной распространения
и фазовой скорости
Из (1) и (2) вытекает, что для получения
Как показывает анализ (3), при
Линия, параметры которой удовлетворяют условию (4), называется линией без искажений. Фазовая скорость для такой линии и затухание
Следует отметить, что у реальных линий (и воздушных, и кабельных)
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|