Жидкостно-кольцевые компрессоры
Жидкостно-кольцевые компрессоры относятся к машинам объемного типа и по принципу действия аналогичны ротационно-пластинчатым компрессорам, с той лишь разницей, что уплотнение камер здесь производится вращающимся жидкостным кольцом, а всасывающий и нагнетательный патрубки подключены не к цилиндрической части корпуса, а к торцевым крышкам (рис. 3.6). Охлаждение сжимаемого газа осуществляется непосредственным контактом с жидкостью, поэтому процесс сжатия приближается к изотермическому. Рис. 3.6. Жидкостно-кольцевой компрессор: 1 – лопастное колесо; 2 – корпус; 3 – окно всасывания; 4 – рабочая жидкость; 5 – окно нагнетания
Ротор 1 с жестко закрепленными лопастями эксцентрично расположен в корпусе 2. Через всасывающее окно 3 непрерывно подается жидкость, которая при вращении ротора под действием центробежных сил отбрасывается к стенкам корпуса и образует жидкостное кольцо 4. Благодаря эксцентричному расположению корпуса объем газа в рабочих камерах между лопастями и жидкостным кольцом изменяется в течение оборота вала и, таким образом, осуществляется цикл всасывания, сжатия и нагнетания газа с подачей его в нагнетательное окно 5. Жидкость от сжатого газа отделяется в сепараторе, например центробежном. Жидкостно-кольцевой компрессор легко вписывается в любой технологический процесс, т. к. в нем можно использовать различные по физико-химическим свойствам рабочие жидкости и соответствующие им конструкционные материалы. Эти достоинства определили использование компрессора во многих отраслях промышленности и в сфере обслуживания. Современные жидкостно-кольцевые компрессорные и вакуумные установки поставляются в моноблочном бесфундаментном исполнении. Единичная их производительность достигает 400 м3/мин, давление нагнетания — 0,25 МПа, а время гарантируемых межремонтных пробегов доходит до 10–20 лет.
Винтовые компрессоры Надежность в работе, малая удельная металлоемкость и габаритные размеры предопределили широкое распространение винтовых компрессоров. В частности, они практически полностью вытеснили другие типы компрессоров в передвижных компрессорных станциях, судовых холодильных установках. Типовая конструкция двухроторного компрессора сухого сжатия, работающего без подачи масла в рабочую полость, показана на рис. 3.7. На ведомом роторе 1 выполнена винтовая нарезка с впадинами. Ведущий винтовой ротор 2 с выпуклой нарезкой соединен непосредственно или через зубчатую передачу с двигателем. Между роторами существует минимальный зазор, обеспечивающий безопасную работу компрессора, а синхронизация их вращения происходит при помощи шестерен 3. Роторы расположены в горизонтально-разъемном корпусе 4, имеющем несколько разъемов, а также расточки под винты, подшипники, уплотнения и камеры всасывания и нагнетания. Рис. 3.7.Винтовой компрессор сухого трения: 1 и 2 – ведомый и ведущий роторы;
Уплотнения, состоящие из графитовых или баббитовых колец, отделяют подшипниковые узлы от рабочего объема корпуса. Между группами колец подается запирающий газ, препятствующий попаданию масла из подшипников в сжимаемый газ. На рис. 3.8 схематично изображен принцип работы винтового компрессора. Между винтовыми поверхностями роторов и стенками корпуса образуются рабочие камеры (число их равно количеству заходов винтовой нарезки). Рассмотрим рабочий процесс на примере одной из камер. При вращении роторов объем камеры увеличивается; когда выступы роторов удаляются от впадин, происходит процесс всасывания (рис. 3.8 а). Когда объем камеры достигает максимума, процесс всасывания заканчивается, и камера оказывается изолированной стенками корпуса и крышками от всасывающего и нагнетательного патрубков. При дальнейшем вращении во впадину ведомого ротора начинает внедряться сопряженный выступ ведущего ротора. Внедрение начинается у переднего торца и постепенно распространяется к нагнетательному окну. С некоторого момента времени обе винтовые нарезки образуют общую полость (рис. 3.8 б), объем которой непрерывно уменьшается благодаря поступательному перемещению линии контактирования сопряженных элементов по направлению к нагнетательному окну. Дальнейшее вращение роторов приводит к вытеснению газа из полости в нагнетательный патрубок (рис. 3.8 c). Благодаря наличию нескольких камер и высокой частоте вращения роторов компрессор создает непрерывный поток газа.
Рис. 3.8.Процесс работы винтового компрессора Отсутствие клапанов обеспечивает винтовым компрессорам возможность работать с высокими частотами вращения, т. е. получать большую производительность при сравнительно небольших габаритах. Существует также однороторная конструкция винтового компрессора, где замыкание камер реализуется при помощи двух отсечных шестерен, причем оси их вращения нормальны к плоскости, в которой лежит ось вращения ротора. Центробежные компрессоры Центробежные компрессоры по сравнению с поршневыми имеют малые габариты и массу, приходящиеся на единицу производительности, обеспечивают подачу сжатого газа без пульсаций, в них отсутствуют поступательно движущиеся части, а значит, инерционные силы, передаваемые на фундамент, незначительны. Сжатие газа происходит без загрязнения его маслом, т. к. в зоне сжатия нет трущихся пар, смазываемых маслом. По конструктивным особенностям центробежный компрессор экономичен при больших производительностях (более 120 м3/мин). На рис. 3.9 показана принципиальная схема центробежного компрессора. Центробежные компрессоры имеют несколько ступеней, число которых зависит от требуемой степени сжатия газа. Каждая ступень состоит из рабочего колеса 3, диффузора 4 и направляющего аппарата 5 и по конструкции напоминает устройство центробежного насоса. При вращении рабочего колеса 3 вблизи его оси образуется разрежение, вследствие чего газ поступает по всасывающему патрубку 1. В рабочем колесе под действием центробежных и газодинамических сил, возникающих при обтекании лопастей, происходит повышение давления и скорости газа. В диффузоре 4 скорость снижается, а давление увеличивается. В следующую ступень сжатый газ поступает через обратный направляющий аппарат 5. Пройдя все ступени, газ попадает в выходную улитку 6 и направляется в нагнетательный трубопровод.
Рис. 3.9. Схема трехступенчатого центробежного компрессора: 1 – всасывающий патрубок; 2 – вал; 3 – рабочее колесо; 4 – диффузор; 5 – направляющий аппарат; 6 – выходная улитка; 7 – подшипник Осевые компрессоры Степень сжатия в одной ступени осевого компрессора невелика и составляет e = 1,15...1,35. Поэтому для получения высокого давления осевые компрессоры выполняют многоступенчатыми. В многоступенчатых осевых компрессорах (рис. 3.10) газ через входной патрубок 1 и конфузор 2 поступает в проточную часть компрессора и перемещается последовательно от лопаток входного направляющего аппарата 3 через группу ступеней сжатия, спрямляющий аппарат 6, диффузор 7 и выходной патрубок 9. Рабочие колеса 4 ступеней вместе с валом, на котором они насажены, образуют ротор, опирающийся на подшипники 8; направляющие аппараты 5 (служащие для частичного преобразования кинетической энергии в потенциальную) вместе с корпусом, в котором они закреплены, — статор. Входной патрубок 1 служит для равномерного подвода газа к кольцевому конфузору 2, который предназначен для ускорения потока перед входным направляющим аппаратом и создания равномерного поля скоростей и давлений. Рис. 3.10. Схема осевого компрессора: Вентиляторы Конструкции вентиляторов
Центробежный (радиальный) вентилятор по конструкции аналогичен центробежному насосу (рис. 2.3). Это тип вентиляторов — один из наиболее часто используемых в химической промышленности. Хотя вентиляторы относятся к компрессорным машинам, расчет характеристик вентиляторов допустимо проводить в рамках теории насосов (см. п. 2), исходя из того, что степень сжатия газов в вентиляторах незначительна, т. е. изменением термодинамических параметров газов в них можно пренебречь. В качестве основных параметров вентиляторов приняты: производительность Q, м3/с; полное давление ∆ p = rgH, Па; статическое давление ∆ p ст = ∆ p – ∆pдин, Па; эффективная мощность N эф, Вт; КПД, вычисленные по полному и статическому давлениям соответственно: , . По предложению ЦАГИ коэффициентом быстроходности вентилятора принято считать частоту вращения вентилятора данного типа, который в режиме максимального КПД подает 1 м3/с газа, создавая условное давление 294 Па 30 кгс/м2 (30 кгс/м2294 Па), т. е. для вентиляторов коэффициент быстроходности равен , (3.1) где H опт — оптимальный напор, приведенный к плотности газа 1,2 кг/м3. Подробнее с особенностями конструкций и рабочими характеристиками центробежных вентиляторов можно ознакомиться по справочникам и каталогам [38–44]. Технические характеристики некоторых вентиляторов и дымососов представлены в табл. 3.1–3.6, а типичная универсальная характеристика (построенная при разных частотах вращения рабочего колеса) центробежного вентилятора — на рис. 3.11. Рис. 3.11. Типичная универсальная характеристика центробежного вентилятора (ВВД № 11) при n=var Таблица 3.1 Технические характеристики вентиляционных агрегатов с центробежными
Таблица 3.2 Технические характеристики вентиляторов типа Ц6-30
Таблица 3.3 Технические характеристики вентиляторов ВМ
Таблица 3.4 Технические характеристики дутьевых вентиляторов ВДН
Таблица 3.5 Технические характеристики дутьевых вентиляторов ВДН и ВГД
Примечание. В числителе приведены параметры, соответствующие низким частотам вращения, а в знаменателе — высоким.
Таблица 3.6 Технические характеристики дымососов и вентиляторов горячего дутья
Осевые вентилятоы В осевом вентиляторе (рис. 3.12) поток движется преимущественно в направлении оси вращения. Осевые вентиляторы просты в изготовлении, компактны и реверсивны. По сравнению с центробежными вентиляторами они имеют более высокие КПД и подачу при относительно малой степени сжатия. Рис. 3.12. Схема осевого вентилятора; В прямоточном радиальном вентиляторе (рис. 3.13) газ вначале движется в осевом направлении и поступает во вращающееся рабочее колесо, где под действием центробежной силы проходит в радиальном направлении через межлопаточные каналы и выходит сквозь кольцевой радиальный лопастной диффузор (направляющий аппарат); в диффузоре часть динамического напора преобразуется в статический, КПД вентилятора достигает 70 %. Одним из его преимуществ является возможность размещения электродвигателя внутри кожуха, что снижает его шумность вентилятора. Рис. 3.13. Схема прямоточного вентилятора:
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|