Физические типы кристаллических решеток
⇐ ПредыдущаяСтр 5 из 5 В зависимости от природы частиц, помещающихся в узлах кристаллической решетки, и от характера сил взаимодействия между частицами различают четыре типа кристаллических решеток и соответственно четыре типа кристаллов: ионные, атомные, металлические и молекулярные. I. Ионные кристаллы. В узлах кристаллической решетки помещаются ионы разных знаков. Силы взаимодействия
между ними являются в основном электростатическими (кулоновскими). Типичным примером ионной решетки может служить изображенная на рис. 1 решетка каменной соли NаС1. Эта решетка принадлежит к кубической системе. Белыми кружками изображены несущие положительный заряд ионы натрия, черными кружками — отрицательные ионы хлора. Как видно из рисунка, ближайшими соседями иона данного знака будут ионы противоположного знака. В газообразном состоянии NaCl состоит из молекул, в которых объединяются попарно ионы натрия с ионами хлора. Образующая молекулу группировка из иона Na и иона С1 утрачивает в кристалле обособленное существование. Ионный кристалл состоит не из молекул, а из ионов. 2. А т о м н ы е к р и с т а л л ы. В узлах кристаллической решетки помещаются нейтральные атомы. Типичными примерами атомных кристаллов могут служить алмаз и графит. Оба эти вещества тождественны по химической природе (они построены из атомов углерода), но отличаются кристаллическим строением. На рис. 2, а показана решетка алмаза, на рис. 2,6—решётка графита. Для этой решетки алмаза характерно то, что каждый атом окружен четырьмя равноотстоящими от него соседями, расположенными в вершинах правильного тетраэдра.
3. Металлические кристаллы. Во всех узлах кристаллической решетки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа, движутся электроны, отщепившиеся от атомов при образовании ионов. Эти электроны играют роль «цемента», удерживая вместе положительные ионы; в противном случае решетка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решетки и не могут ее покинуть.
4. Молекулярные кристаллы. В узлах кристаллической решетки помещаются определенным образом ориентированные молекулы. Силы связи между молекулами в кристалле имеют ту же природу, что и силы притяжения между молекулами, приводящие к отклонению газов от идеальности. Молекулярные решетки образуют, например, следующие вещества: Нг, Na, Оз, СОа, НаО. Таким образом, обычный лед, а также так называемый сухой лед (твердая углекислота) представляют собой молекулярные кристаллы. Дефекты в кристаллах Дефектами кристаллов называют нарушения идеальной кристаллической структуры. Такое нарушение может заключаться в отсутствии атома в узле решетки (вакансия), в замене атома данного вещества (своего атома) чужим атомом (атомом примеси), во внедрении лишнего атома (своего или чужого) в межузельное пространство. Подобные дефекты называются точечными. Они вызывают нарушения правильности решетки, распространяющиеся на расстояния порядка нескольких периодов. Кроме точечных, существуют дефекты, сосредоточенные вблизи некоторых линий. Их называют линейными дефектами
или дислокациями. Дефекты такого вида нарушают правильное чередование кристаллических плоскостей. Простейшими видами дислокации являются краевая и винтовая дислокации. Краевая дислокация обусловливается лишней кристаллической полуплоскостью, вдвинутой между двумя соседними слоями атомов (рис. 1). Край этой полуплоскости образует дислокацию данного вида. Линией дислокации является перпендикулярная к плоскости рисунка прямая, отмеченная знаком
Винтовую дислокацию можно представить как результат разреза кристалла по полуплоскости и последующего сдвига лежащих по разные стороны разреза частей решетки навстречу друг другу на величину одного периода (рис. 2). Внутренний край разреза образует винтовую дислокацию (см. пунктирную прямую на рисунке). Кристалл с винтовой дислокацией фактически состоит из одной кристаллической плоскости, которая изогнута по винтовой поверхности (такую поверхность называют геликоидом). Линия дислокации совпадает с осью винта. При каждом обходе вокруг этой линии кристаллическая плоскость смещается на один период.
![]() Мы рассмотрели два простейших (предельных) вида дислокации. В обоих случаях линии дислокации являются прямыми. В общем случае линии дислокации могут быть кривыми. Дефекты оказывают сильное влияние на физические свойства кристаллов, в том числе и на их прочность. В частности, дислокации служат причиной того, что пластическая деформация (т.е. деформация, сохраняющаяся после снятия напряжения, вызвавшего эту деформацию) реальных кристаллов происходит под воздействием напряжений на несколько порядков меньших, чем вычисленное для идеальных кристаллов. У монокристаллов металлов легко происходит сдвиг вдоль атомных слоев. Не следует представлять себе этот процесс так, что все атомы слоя смещаются одновременно как одно целое. В действительности атомы перескакивают в новые положения небольшими группами поочередно. Такое поочередное перемещение атомов может быть представлено как движение дислокации. Для перемещения дислокации достаточно напряжений, много меньших, чем для перемещения всего атомного слоя сразу. На рис. 3 показаны последовательные стадии процесса, происходящего в кристалле под действием сил, обусловливающих сдвиг. Первоначально имевшаяся дислокация под воздействием созданных в кристалле напряжений перемещается вдоль кристалла. Это перемещение сопровождается поочередным сдвигом атомов слоя, лежащего над дислокацией, относительно атомов слоя, лежащего под дислокацией.
Перемещению дислокации препятствует наличие других дефектов в кристалле, например, присутствие атомов примеси. Дислокации тормозятся также при пересечении друг с другом. Если количество дислокации и других дефектов в кристалле мало, дислокации перемещаются практически свободно. В результате сопротивление сдвигу будет невелико. Увеличение плотности дислокации и возрастание концентрации примесей приводит к сильному торможению дислокации и прекращению их движения. В результате; прочность материала растет. Так, например, повышение прочности железа достигается растворением в нем атомов углерода (такой раствор представляет собой сталь). Пластическая деформация сопровождается разрушением кристаллической решетки и образованием большого количества дефектов, препятствующих перемещению дислокации. Этим объясняется упрочение материалов при их холодной обработке. Винтовая.дислокация часто возникает в процессе роста кристаллов из раствора или расплава. Захват атома гладкой плоской кристаллической поверхностью энергетически менее выгоден и поэтому менее вероятен, чем присоединение атома к ступеньке, существующей на поверхности кристалла с винтовой дислокацией. Поэтому кристаллы предпочитают расти со встроенной внутрь винтовой дислокацией. Новые атомы присоединяются к краю ступеньки, вследствие чего рост кристалла происходит по спирали. Теплоемкость кристаллов Расположение частиц в узлах кристаллической решетки отвечает минимуму их взаимной потенциальной энергии, т.е. частица находится в положении равновесия. При смещении частиц из положения равновесия в любом направлении появляется сила, стремящаяся вернуть частицу в первоначальное положение, вследствие чего возникают колебания частицы. Колебание вдоль произвольного направления можно представить как наложение колебаний вдоль трех взаимно перпендикулярных направлений. Поэтому каждой частице в кристалле следует приписывать три колебательные степени свободы.
Из молекулярно-кинетической теории известно, что на каждую колебательную степень свободы в среднем приходится энергия, равная kT (k – постоянная Больцмана). Следовательно, на каждую частицу—атом в атомной решетке, ион в ионной или металлической решетке — приходится в среднем энергия, равная 3kT. Ограничившись рассмотрением химически простых веществ, образующих атомные или металлические кристаллы, для внутренней энергии моля вещества в кристаллическом состоянии можно написать выражение
где Приращение внутренней энергии, соответствующее повышению температуры па один кельвин, равно теплоемкости при постоянном объеме. Следовательно, Поскольку объем твердых тел при нагревании меняется мало, их теплоемкость при постоянном давлении незначительно отличается от теплоемкости при постоянном объеме, так что можно положить И, так согласно теплоемкость моля химически простых тел в кристаллическом состоянии одинакова и равна
Более того, вопреки (1) теплоемкость кристаллов зависит от температуры, причем зависимость имеет характер, показанный на рис. 1. При достаточно высокой, характерной для каждого вещества температуре начинает выполняться равенство (1). У большинства тел это достигается уже при комнатной температуре, у алмаза же теплоемкость достигает значения 3R лишь при температуре порядка 1000°С, Строгая теория, теплоемкости твердых тел, созданная Эйнштейном и Дебаем, учитывает, во-первых, квантование энергии колебательного движения. Во-вторых, теория учитывает, что колебания частиц в кристаллической решетке не являются независимыми. Эта теория) находится в хорошем согласии с опытными данными. В частности, для высоких температур она приводит к выражению (1).
Эффект Холла Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между гранями, параллельными направлениям тока и поля, возникает разность потенциалов Холловская разность потенциалов определяется выражением
Здесь Эффект Холла очень просто объясняется электронной теорией. В отсутствие магнитного поля ток в пластинке обусловливается электрическим полем При включении магнитного поля каждый носитель оказывается под действием магнитной силы F, направленной вдоль стороны Ь пластинки и равной по модулю
В результате у электронов появляется составляющая скорости, направленная к верхней (на рисунке) грани пластинки. У этой у грани образуется избыток отрицательных, соответственно у нижней грани — избыток положительных зарядов. Следовательно, возникает дополнительное поперечное электрическое поле Поле прежде лежали на одной и той же эквипотенциальной поверхности, теперь имеют разные потенциалы. Чтобы найти напряжение, возникающее между этими точками, нужно умножить расстояние между ними Выразим и через
Последнее выражение совпадает с (1), если положить
Из (4) следует, что, измерив постоянную Холла, можно найти концентрацию носителей тока в данном металле (т. е. число носителей в единице объема). Важной характеристикой вещества является подвижность в нем носителей тока. Подвижностью носителей тока называется средняя скорость, приобретаемая носителями при напряженности электрического поля, равной единице. Если в поле напряженности Е носители приобретают скорость и, то подвижность их
Подвижность можно связать с проводимостью
Измерив постоянную Холла Эффект Холла наблюдается не только в металлах, но и в полупроводниках, причем по знаку эффекта можно судить о принадлежности полупроводника к п- или р-типу. На рис. 3 сопоставлен эффект Холла для образцов с положительными и отрицательными носителями. Направление магнитной силы изменяется на противоположное как при изменении направления движения заряда, так) и при изменении его знака. Следовательно, при одинаковом направлении тока и поля магнитная сила, действующая на положительные и отрицательные носители, имеет одинаковое направление. Поэтому в случае положительных носителей потенциал верхней (на рисунке) грани выше, чем нижней, а в случае отрицательных носителей—ниже. Таким образом, определив знак холловской разности потенциалов, можно установить знак носителей тока. Любопытно, что у некоторых металлов знак Эффект Мёссбауэра Атомы особенно интенсивно поглощают свет частоты, соответствующей переходу из основного в ближайшее к нему возбужденное состояние. Это явление называется резонансным поглощением. Возвращаясь затем в основное состояние, атомы испускают фотоны резонансной частоты. Соответствующее излучение носит название резонансного излучения или резонансной флуоресценции. Подобно атомам, атомные ядра имеют дискретные уровни энергии, самый низкий из которых называется нормальным, остальные — возбужденными. Переходы между этими уровнями приводят к возникновению коротковолнового электромагнитного излучения, получившего название Соответствующие переходу квантовой системы между двумя состояниями линия испускания и линия поглощения смещены друг относительно друга на где R— энергия отдачи. где Ширину спектральной линии, сдвиг линий и т.п. мы будем выражать в единицах энергии, умножая для этой цели соответствующие частоты на постоянную Планка где На рис. 1 изображена типичная для До 1958 г. резонансное поглощение
и попадал на поглощающее вещество. Установленный за поглотителем счетчик В 1958 г. Р. Л. Мёссбауэр исследовал ядерное резонансное поглощение Физическая суть эффекта Мёссбауэра состоит в том, что при испускании Итак, при испускании или поглощении
Эффект Мёссбауэра нашел многочисленные применения. В ядерной физике он используется для нахождения времени жизни возбужденных состояний ядер (через Г), а также для определения спина, магнитного момента и электрического квадрупольного момента ядер. В физике твердого тела эффект Мёссбауэра применяется для изучения динамики кристаллической решетки и для исследования внутренних электрических и магнитных полей в кристаллах.
Отсюда где Свет, приходящий на Землю от звезд, преодолевает сильное притягивающее поле этих светил. Вблизи же Земли он испытывает действие лишь очень слабого ускоряющего поля. Поэтому все спектральные линии звезд должны быть немного смещены в сторону красного конца спектра. Такое смещение, называемое гравитационным красным смещением, было качественно подтверждено астрономическими наблюдениями. Паунд и Ребка предприняли попытку обнаружить это явление в земных условиях. Они расположили источник Это изменение обусловливает относительное смещение линий поглощения и испускания и должно проявиться в небольшом ослаблении резонансного поглощения. Несмотря на крайнюю малость эффекта (сдвиг составлял около
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|