Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Раздел II. Функции нескольких переменных.




23. N-мерная точка, n-мерное арифметическое пространство . Расстояние в . N-мерный шар. Окрестность точки в . Классификация точек (предельные, внутренние, граничные). Множества точек в (открытые, замкнутые, ограниченные, связные, выпуклые).

24. Понятие функции 2-х переменных, n-переменных. Естественная область определения ФНП, график функции 2-х переменных, линии и поверхности уровня.

25. Частные и полное приращения ФНП. Понятия предела и непрерывности ФНП. Свойства функций непрерывных в ограниченной и замкнутой области.

26. Частные производные первого и высших порядков, их нахождение.

27. Понятие дифференцируемости ФНП в точке. Независимость смешанных производных от порядка дифференцирования.

28. Взаимосвязь понятий: дифференцируемость ФНП в точке, непрерывность в точке, существование в точке конечных частных производных.

29. Геометрический смысл дифференцируемости ФНП в точке. Уравнения касательной плоскости и нормали к поверхности в данной точке.

30. Дифференциалы ФНП первого и высших порядков, их нахождение. Применение первого дифференциала в приближённых вычислениях.

31. Производная по направлению и градиент, связь между ними.

32. Неявная ФНП, условия её существования и дифференцируемости. Правила вычисления производных неявной функции.

33. Точки локального экстремума (максимума и минимума) и локальные экстремумы ФНП. Стационарные и критические точки. Необходимое и достаточное условия локального экстремума ФНП.

34. Условный экстремум ФНП. Функция Лагранжа. Нахождение условного экстремума методом неопределённых множителей Лагранжа.

35. Глобальные экстремумы (наибольшее и наименьшее значения) ФНП в ограниченной и замкнутой области, их нахождение.

 

 

Приложения.

6.1. Образец решения контрольных задач типового варианта.

Семестр 2.

1.1-30. Найти производную :

а) ; б) ; в)

Нахождение производной функции заданной явно, с помощью правил дифференцирования:

(), , , , , , , сводят к нахождению табличных производных.

Производную функции заданной параметрическими уравнениями находят в параметрическом виде по формуле .

Решение.

а) , где

= ;

Тогда .

б) , где

.

.

Тогда

.

в)

.

Ответ: а) б) .

в)

2.1-30. Найти а) производную функции , заданной параметрически; б) производную функции , заданной неявно.

а) Производную функции , заданной параметрическими уравнениями находим по формуле , где

;

.

Тогда .

б) Уравнение неявно определяет функцию . Дифференцируя его по x, получим: .

Выразим

;

.

Ответ: а) б) .

3.1-30. Вычислить пределы, используя правило Лопиталя.

а) ; б) ; в) .

Вычисление предела , где , всегда начинают с подстановки в предельного значения её аргумента . Если в результате получают неопределённость или , то для её раскрытия применяют правило Лопиталя: , где и - функции, дифференцируемые в окрестности . В некоторых случаях может потребоваться неоднократное применение данного правила. На каждом этапе его применения следует использовать, упрощающие отношение, тождественные преобразования, а также комбинировать это правило с любыми другими известными приёмами вычисления пределов. Раскрытие неопределённостей вида: , , , , путём преобразований: , , сводят к раскрытию неопределенностей вида или .

Решение.

а) , где

,

Тогда .

б) , где

,

.

Тогда . Применяем правило Лопиталя ещё раз: , где

,

= .

Тогда .

в) . Преобразуем данную неопределённость (приведением разности дробей к общему знаменателю) к виду , после чего применим правило Лопиталя. Получим

= , где

,

.

Тогда .

Применяем правило Лопиталя ещё раз:

, где ,

.

В итоге получим .

Ответ:

а) ; б) ;в) .

 

4.1-30. Для указанной функции требуется провести полное исследование функции и построить её график:

;

Для построения графика функции нужно:

1) найти область определения функции;

2) найти область непрерывности функции и точки разрыва;

3) исследовать функцию на чётность, нечётность и периодичность;

4) найти точки пересечения графика с осями координат;

5) найти асимптоты графика функции;

6) найти интервалы возрастания и убывания, экстремумы функции;

7) найти интервалы выпуклости, вогнутости и точки перегиба.

Решение.

1) Находим область определения функции: = ).

2) Поскольку данная функция является элементарной, то областью её непрерывности является область определения , а точками разрыва являются точки и , не принадлежащие множеству , но являющиеся предельными точками этого множества (точками в любой окрестности которых содержатся точки данного множества). Исследуем характер разрыва в точках и , вычислив в них односторонние пределы функции:

, ,

, .

Так как односторонние пределы функции в точках и - бесконечные, то данные точки являются точками бесконечного разрыва.

3) Функция не является периодической.

Функция , в аналитическое выражение которой входит хотя бы одна непериодическая функция периодической не является.

Проверяем является ли функция чётной или нечётной. Так как область определения функции = ) не симметрична относительно точки , то данная функция – общего вида.

4) Находим точки пересечения графика с осями координат.

Так как , то точек пересечения графика с осью нет.

Положим и решим уравнение . Его решением является . Следовательно, точка - точка пересечения графика с осью .

5) Находим вертикальные и наклонные асимптоты графика функции.

 

Прямая является вертикальной асимптотой, тогда и только тогда, когда является точкой бесконечного разрыва функции .

 

Так как точки и - точки бесконечного разрыва данной функции, то вертикальными асимптотами графика функции являются прямые и .

Прямая является наклонной асимптотой графика функции при тогда и только тогда, когда одновременно существуют конечные пределы: и .

Вычисляем сначала пределы при : , .

В дальнейшем будем иметь в виду следующий часто встречающийся предел:

Следовательно , т.е. - наклонная (горизонтальная) асимптота графика функции при .

Аналогично вычисляем пределы при : , Следовательно , т.е. - наклонная (горизонтальная) асимптота графика функции при .

6) Определяем интервалы возрастания, убывания, экстремумы функции. Для этого находим первую производную функции:

и определяем критические точки функции , т.е. точки в которых или не существует:

;

не существует при и .

Таким образом, единственной критической (стационарной) точкой функции является точка .

Исследуем знак производной в интервалах, на которые критические точки функции разбивают её область определения , и найдём интервалы возрастания, убывания, экстремумы функции. Результаты исследования представим следующей таблицей:

+ +
возрастает возрастает убывает убывает

Так как при переходе слева направо через точку производная меняет знак с «+» на «», то точка является точкой локального максимума и .

7) Определяем интервалы выпуклости, вогнутости, точки перегиба графика функции. Для этого находим вторую производную функции:

и определяем точки возможного перегиба , т.е. точки в которых или не существует: , так как (квадратное уравнение не имеет действительных корней); не существует при и .

Таким образом, функция не имеет точек возможного перегиба.

Исследуем знак второй производной в интервалах, на которые точки возможного перегиба функции разбивают её область определения , и найдём интервалы выпуклости, вогнутости, точки перегиба графика функции. Результаты исследования представим следующей таблицей:

+ +
график вогнутый график выпуклый график вогнутый

Точек перегиба нет.

8) На основании полученных результатов строим график функции (рис.3)

Рис.3.

Ответ: Рис.3.

5.1-30. Для указанной функции требуется найти наибольшее и наименьшее значения функции на отрезке :

, .

Наибольшее и наименьшее значения функции непрерывной и кусочно-дифференцируемой (дифференцируемой, за исключением, быть может, конечного числа точек) на отрезке достигается или в точках , в которых или не существует, или на концах отрезка.

1) Находим первую производную функции:

и определяем внутренние критические точки функции , т.е. точки в которых или не существует:

, точек в которых не существует нет. Таким образом, единственной внутренней критической (стационарной) точкой функции на отрезке является точка .

2) Вычисляем значения функции во внутренних критических точках и на концах отрезка : , , .

3) Сравниваем значения , , и находим наименьшее и наибольшее значения функции на отрезке :

, .

Ответ: ,

6.1 – 30. Для указанной функции требуется: а) найти полный дифференциал ; б) вторую частную (смешанную) производную ; если .

Полный дифференциал функции имеет вид .

 

Частные производные функции вычисляются по обычным правилам дифференцирования функции одной переменной, в предположении, что если производная берётся по аргументу (аргументу ), то другой аргумент (аргумент ) считается постоянным.

Решение.

а) Находим частные производные первого порядка и функции

:

;

.

Тогда полный дифференциал функции имеет вид:

.

б) Вторую частную производную (или кратко ) находим как первую частную производную по аргументу от функции :

.

Ответ: а) , б) ;

7.1 – 30. Для функции , заданной неявно, найти частные производные и .

Для функции , заданной уравнением справедливы формулы: , , при условии .

В данном примере . Найдем частные производные функции :

;

;

;

Тогда, учитывая что , , получим:

;

Ответ: а) , б) .

 

8.1 – 30. Найти локальные экстремумы функции

.

Для нахождения локальных экстремумов дифференцируемой функции необходимо: 1) Найти область определения функции. 2) Найти первые частные производные и функции. 3) Решить систему уравнений (необходимое условие экстремума) и найти точки (с учётом возможных дополнительных ограничений на значения аргументов и ) возможного локального экстремума функции. 4) Найти вторые частные производные , , ; составить выражение и вычислить значения и в каждой точке возможного экстремума. 5) Сделать вывод о наличии экстремумов функции , используя достаточное условие экстремума: если , то в точке экстремума нет; если и , то в точке - локальный минимум; если и , то в точке - локальный максимум; если , то требуется дополнительное исследование точки (например, по определению). 6) Найти локальные экстремумы (экстремальные значения) функции.

Решение.

1) Находим область определения функции .

2) Находим первые частные производные и :

;

.

3) Составим систему уравнений и решим её. Получим четыре решения: , , , . Из них точками возможного экстремума функции в области являются только две точки: и .

4) Находим вторые частные производные:

;

;

,

составляем выражение и вычисляем:

; , .

5) Делаем вывод о наличии экстремумов. Так как:

, то в точке экстремума нет;

, , то в точке - локальный минимум.

6) Находим локальный минимум

.

Ответ: .

9.1–30. Найти условные экстремумы функции приусловии .

Для нахождения методом Лагранжа локальных экстремумов дифференцируемой функции при условии необходимо: 1) Найти область определения функции. 2) Составить функцию Лагранжа , где - неопределённый постоянный множитель Лагранжа. 3) Решить систему уравнений (необходимое условие условного экстремума) и найти точки возможного условного локального экстремума и соответствующие им значения множителя Лагранжа. 4) Найти выражение второго дифференциала функции Лагранжа в точках при условии, что и связаны уравнением . 5) Сделать вывод о наличии экстремумов функции приусловии , используя достаточное условие условного экстремума. Если для всех , (одновременно), связанных уравнением , , то в точке - локальный максимум; если , то в точке - локальный минимум. Если принимает как положительные, так и отрицательные значения, то в точке экстремума нет. 6) Найти локальные условные экстремумы функции .

Решение.

1) Находим область определения функции .

2) Составляем функцию Лагранжа: .

3) Записываем необходимое условие условного экстремума ,

где: ,

. Получим . Решая систему, находим две точки возможного условного экстремума функции вобласти и соответствующие им значения множителя Лагранжа : при и при .

4) Находим выражение второго дифференциала функции Лагранжа

.

Вычисляем при условии , учитывая, что:

;

.

Получим:

;

.

 

5) Делаем вывод о наличии экстремумов. Так как для всех : , то в точке - условный локальный минимум;

, то в точке - условный локальный максимум.

6) Находим условные минимум и максимум функции при условии :

,

Ответ: , при условии .

10.1–30. Найти наибольшее и наименьшее значения функции:

в области D:

Функция , дифференцируемая в ограниченной замкнутой области , достигает своего наибольшего и наименьшего значений или в стационарных точках , или в точках границы области . Для их нахождения необходимо: 1) Найти все стационарные точки функции и вычислить в них значения функции . 2) Найти наибольшее и наименьшее значения функции на границе , задаваемой одним аналитическим выражением в явном виде или . Если , где задаются одним аналитическим выражением в явном виде, то находят наибольшие и наименьшие значения и функции на каждом из участков границы. 3) Сравнить значения функции , , и выбрать из них наибольшее и наименьшее значения функции в области .

Решение. Изображаемобласть (она представляет собой треугольник, ограниченный прямыми ,

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...