Рельеф и геологические структуры 2 Глава
2. Нередко можно наблюдать, что рельеф, созданный в недав 3. Часто встречаются случаи, когда рельеф формируется за счет 4. При выявлении генезиса форм рельефа разного порядка не Перечисленные трудности в большинстве случаев преодолимы. Прежде всего, если решается вопрос о планетарных или мегафор-мах рельефа, то, несомненно, они в своих крупных чертах связаны с эндогенными процессами. Это можно сказать (с некоторыми исключениями) и о макрорельефе. Из мезоформ лишь в отдельных, довольно редких случаях можно выделить такие формы, морфология которых целиком определена тектоническим процессом и не изменена экзогенными агентами. Мезоформы и более мелкие формы рельефа в подавляющем большинстве случаев оказываются связанными с экзогенными процессами, хотя проявление их в той или иной геологической обстановке может быть существенно различным. При этом в качестве ведущего процесса выделяется тот, который придал основные черты данной форме или данному комплексу форм рельефа, даже если в настоящий момент этот процесс перестал действовать. Для примера можно привести ледниково-аккумулятивный рельеф областей недавнего (позднеплейстоценового) оледенения, четвертичные морские или аллювиальные террасы. В настоящий момент эти образования подвержены воздействию других процессов, но будучи ледниковыми, прибрежно-морскими или флювиальными фор-
мами, они еще 'в достаточной мере сохранили те морфологические черты, которые им придали недавно действовавшие процессы. В тех случаях, когда в образовании той или иной формы или группы (комплекса) форм одновременно участвуют не один, а два или несколько факторов, вполне соизмеримых по своему морфологическому значению, следует говорить о сложном, комплексном происхождении рельефа. Генезис рельефа определяется преимущественно в ходе полевых наблюдений, на основе которых устанавливаются характерные черты, свойственные различным генетическим типам рельефа, признаки выработанных или аккумулятивных форм рельефа. Кроме того, для выяснения генезиса аккумулятивных форм рельефа важное значение имеет всестороннее изучение слагающих их отложений. Аллювиальные, пролювиальные, морские отложения и т. д. обладают в большинстве случаев достаточно специфическим комплексом литологических и морфологических свойств, позволяющих судить о генезисе слагаемых ими аккумулятивных форм. Эти признаки будут более ясны из последующего рассмотрения различных генетических групп рельефа. ВОЗРАСТ РЕЛЬЕФА Важной задачей геоморфологии наряду, с изучением морфогра-фии, морфометрии и установлением генезиса является выяснение возраста рельефа. Как известно, в геологии возраст пород представляет одну из важнейших геологических характеристик, и показ возраста, по существу, составляет основное содержание общих геологических карт. Определение геологического возраста пород основывается на применении хорошо разработанных стратиграфического, палеонтологического и петрографического методов, которые в последнее время все чаще подкрепляются методами абсолютной геохронологии. В геоморфологии определение возраста — задача более сложная, так как геологические методы применимы лишь для аккумулятивных форм рельефа и не могут быть использованы непосредственно для определения возраста форм выработанного, или денудационного, рельефа.
В геоморфологии, как и в геологии, обычно используют понятия «относительный» и «абсолютный» возраст рельефа. Относительный возраст рельефа. Понятие «относительный возраст рельефа» в геоморофологии имеет несколько аспектов. А. Развитие рельефа какой-либо территории или какой-либо отдельно взятой формы, как это показал В. Девис, является стадийным процессом. Поэтому под относительным возрастом рельефа можно понимать определение стадии его развития. В качестве примера можно проследить развитие рельефа морских берегов или речных долин. Из истории четвертичного периода известно, что во время последнего оледенения (примерно 20 тыс. лет назад) уровень океанов и морей был ниже современного, приблизительно на 100 м. По мере таяния материковых ледниковых покровов и возвращения воды в кругооборот уровень Мирового океана постепенно повышался: 4000—5000 лет назад он достиг отметки, близкой к современной. Воды океанов и морей затопили понижения прибрежной суши. Возникли исходные береговые линии, характеризующиеся сильной изрезанностью. Образование изрезанных берегов, называемых ингрессионными, может рассматриваться как начальная стадия развития современного берега. В дальнейшем абразионные процессы способствовали образованию уступов в высоких склонах мысов и постепенному их срезанию разрушительной работой волн. Одновременно в вершинах заливов возникают первые береговые аккумулятивные формы. Это стадия юности развития берега. Позднее мысы срезаются, а бухты (заливы) полностью отчленяются от моря аккумулятивными образованиями, берег становится выровненным. Выравнивание береговой линии знаменует стадию зрелости берега. Дальнейшее развитие ведет к затуханию абразионного процесса. У мысов начинается аккумуляция. Сокращение поступления обломочного материала может привести к частичному размыву аккумулятивных форм, образовавшихся ранее в устьях бухт. Это стадия дряхлости, или старости.
Рассмотрим другой пример — формирование речной долины на поверхности, недавно освободившейся из-под ледникового покрова. На первых порах река имеет невыработанное русло, слабо врезанное в подстилающие породы. В процессе развития русло постепенно врезается в подстилающие породы, но в его продольном профиле еще остаются многочисленные неровности. Это стадия юности речной долины. Дальнейшее врезание ведет к выработке закономерного вогнутого продольного профиля, врезание русла по вертикали сменяется размывом бортов долины. Наряду с руслом формируется пойма. Речная долина вступает в стадию зрелости. В дальнейшем боковая эрозия приводит к расширению поймы, река блуждает в пределах этой поверхности, течение ее становится замедленным, а русло чрезвычайно извилистым. Наступает стадия старости речной долины. Следовательно, один из аспектов определения относительного возраста рельефа —это определение стадии его развития по комплексу характерных морфологических и динамических признаков. Б. Понятие «относительный возраст рельефа» применяется также при изучении взаимоотношений одних форм с другими. В общем случае любая форма является более древней по отношению к тем, которые осложняют ее поверхность и сформировались в более позднее время. Так, в пределах Прикаспийской низменности широким распространением пользуется позднечетвертичная (хвалынская) морская равнина, которая после регрессии хвалынского моря в одних местах подверглась расчленению эрозионными процессами, в других — ее поверхность оказалась переработанной эоловыми процессами, сформировавшими разнообразные типы эолового рельефа. Следовательно, эрозионные (выработанные) и эоловые (ак- кумулятивные) • формы рельефа являются вторичными (более молодыми) по отношению к первичной (в данном случае хвалынской) морской равнине.
В. Определение относительного геологического возраста рельефа означает установление того геологического отрезка времени, когда рельеф приобрел черты, в основном аналогичные его современному облику. Если речь идет об аккумулятивных формах рельефа, то вопрос сводится к определению обычными геологическими метода-ми возраста слагающих эту форму отложений. Так, например, аллювиальные террасы, сложенные среднечетвертичными отложениями, имеют среднечетвертичный возраст; древние дюны, сложенные эоловыми плиоценовыми отложениями, имеют плиоценовый возраст и т. д. Сложнее с определением возраста выработанных форм рельефа. К. К. Марков рекомендует следующие способы: 1. Определение возраста по коррелятным отложениям. При об 2. Метод возрастных рубежей. Его суть заключается в опреде Долина реки врезана в поверхность, сложенную осадками неогенового возраста. На дне долины под современным аллювием залегают ледниковые осадки раннечетвертичного возраста. Следовательно, рассматриваемая долина сформировалась на границе неогена и раннечетвертичного времени: она врезана в неогеновые отложения, т. е. моложе их, и выполнена нижнечетвертичными ледниковыми образованиями, т. е. старше их. Этот метод применим для определения относительного геологического возраста и аккумулятивного рельефа. 3. Определение времени «фиксации» выработанного (денуда другими методами возраста коры выветривания дает тем самым ответ на вопрос о возрасте денудационной поверхности. 4. Определение относительного геологического возраста рельефа путем прослеживания фациальных переходов. Этот метод может быть применен при решении задачи о возрасте тех аккумулятивных форм, которые сложены осадками, не содержащими палеонтологических остатков. Прослеживая в пространстве данную пачку отложений до фациальной смены ее отложениями, содержащими палеонтологические остатки, устанавливают одновозрастность обеих пачек осадков и, следовательно, одновозрастность образуемых ими форм рельефа. Так, например, можно установить возраст аллювиальной террасы, если ее удается проследить до перехода в прибрежноморские отложения, возраст которых определяется палеонтологическим методом. Таким же образом можно в ряде случаев определить возраст некоторых выработанных форм, например, путем прослеживания абразионной морской террасы до ее сопряжения с аккумулятизной.
Абсолютный возраст рельефа. В последние десятилетия благодаря развитию радиоизотопных методов исследования широко применяется определение возраста отложений и форм рельефа в абсолютных единицах — в годах. Зная период полураспада того или иного радиоизотопа и определяя соотношение его количества с его производным, получают достаточно надежный способ определения абсолютного возраста. В настоящее время широко используются для определения абсолютного возраста такие методы, как радиоуглеродный, калий-аргоновый, фторовый, метод неравновесного урана и др., каждый из которых имеет свои пределы применимости. Абсолютный возраст древних отложений и форм рельефа определяется также с помощью палеомагнитного метода. Итак, морфографическая и морфометрическая характеристика рельефа, установление его генезиса, возраста и истории развития — такова совокупность основных задач геоморфологического исследования. Методы решения этих задач, разумеется, не исчерпываются только теми, которые были кратко рассмотрены в этом разделе. В ходе дальнейшего изложения материала будут рассмотрены и более конкретные методы и приемы изучения рельефа. ГЛАВА 4. ФАКТОРЫ РЕЛЬЕФООБРАЗОВАНИЯ Как указывалось выше, исходным положением современной геоморфологии является представление о том, что рельеф формируется в результате взаимодействия эндогенных и экзогенных процессов. Существует, кроме того, ряд факторов, которые непосредственно не участвуют в формировании рельефа, но влияют на его образование, определяя «набор» рельефообразующих процессов, степень интенсивности и пространственную локализацию воздей- ствия тех или иных процессов. К числу таких факторов относятся вещественный состав пород, слагающих земную кору, геологические структуры, созданные тектоническими движениями прежних геологических эпох, климатические условия и в определенной степени сам рельеф. Рассмотрим эти факторы несколько подробнее. СВОЙСТВА ГОРНЫХ ПОРОД И ИХ РОЛЬ В РЕЛЬЕФООБРАЗОВАНИИ Известно, что земная кора сложена горными породами разного генезиса и разнообразного химического и минералогического состава. Эти различия находят отражение в свойствах пород и, как следствие этого, в их устойчивости по -отношению к воздействию внешних сил. Различают породы более стойкие и менее стойкие, более податливые и менее податливые. В первом случае обычно имеют в виду стойкость пород по отношению к процессам выветривания, во втором — к воздействию на них текучих вод, ветра и других экзогенных сил. Различные генетические группы горных пород по-разному реагируют на воздействие внешних сил. Так, осадочные горные породы являются довольно стойкими по отношению к выветриванию, но многие из них весьма податливы к разрушительной работе текучих вод и ветра (лёсс, пески, суглинки, глины, мергели, галечники и т. д.), а магматические и метаморфические породы оказываются стойкими или довольно стойкими по отношению к размыву текучими водами, но сравнительно легко разрушаются под воздействием процессов выветривания. Объясняется это тем, что магматические и метаморфические породы образовались в глубине земли, в определенной термодинамической обстановке и при определенном соотношении химических элементов. Оказавшись на поверхности Земли, они попадают в новые условия, становятся неустойчивыми в этих условиях и под воздействием различных процессов (окисления, гидратации, растворения, гидролиза и др.) начинают разрушаться. Интенсивность разрушения определяется как физико-химическими свойствами пород, так и конкретными физико-географическими (в первую очередь, климатическими) условиями, поскольку в разных климатических зонах характер процессов выветривания и сноса продуктов выветривания имеет свои специфические особенности. Из числа кристаллических пород более стойки по отношению, например, к физическому выветриванию породы мономинеральные, мелко- и равномернозернистые, светлоокрашенные, с массивной текстурой. Так, гранит — порода полиминеральная, разрушается быстрее, чем кварцит — порода мономинеральная. Крупно- и нерав-номернозернистые граниты с более темной окраской в сходных условиях менее устойчивы, чем светлоокрашенные мелко- и равномернозернистые граниты. Гнейс — порода, сходная по структуре и минералогическому составу с гранитом, но имеющая иную структу- nv (параллельно-сланцеватую или тонкополосчатую), подвержена более быстрому разрушительному воздействию выветривания, чем. гпанит характеризующийся массивной текстурой. Основные и ультраосновные магматические породы при прочих равных условиях под воздействием выветривания разрушаются быстрее, чем породы кислые и средние. | Существенное влияние на интенсивность процессов физического выветривания оказывают такие свойства горных пород, как теплоемкость и теплопроводность. Так, чем меньше теплопроводность, тем большие температурные различия возникают на соседних участках породы при ее нагревании и охлаждении и, как следствие этого, большие внутренние напряжения, которые и способствуют более быстрому ее разрушению. Большое морфологическое значение имеет степень проницаемости горных пород для дождевых и талых вод. Легко проницаемые породы, поглощая воду, способствуют быстрому переводу поверхностного стока в подземный. В результате участки, сложенные легкопроницаемыми породами, характеризуются слабым развитием эрозионных форм, а склоны этих форм вследствие незначительного смыва долгое время могут сохранять большую крутизну. На участках, сложенных слабопроницаемыми породами, создаются благоприятные условия для возникновения и развития эрозионных форм, для выполаживания их склонов. Залегание водоупорных пластов в основаниях крутых склонов долин рек, берегов озер и морей способствует развитию оползневых процессов и специфического рельефа, свойственного районам развития оползней. Проницаемость горных пород может быть обусловлена либо их строением (рыхлым —пески, галечники; пористым —известняки-ракушечники, различные туфы, пемза), либо их трещиноватостью (известняки, доломиты, магматические и метаморфические породы). Следует подчеркнуть, что трещиноватость горных пород, способствуя заложению и развитию эрозионных форм, часто определяет рисунок гидрографической сети в плане. Громадное морфологическое значение имеет такое свойство горных пород, как растворимость. К числу легко или относительно легкорастворимых пород относятся каменная соль, гипс, известняки, доломиты. В местах широкого развития этих пород формируются особые морфологические комплексы, обусловленные так называемыми карстовыми процессами. Находит отражение в рельефе и такое свойство горных пород, как просадочность. Этим свойством, выражающимся в уменьшении объема породы при ее намокании, обладают лёссы и лёссовидные суглинки. В результате просадки в областях распространения этих пород обычно образуются неглубокие отрицательные формы рельефа. Существует целый ряд других свойств, определяющих морфологическое значение пород и степень их устойчивости к воздействию внешних сил. В конечном счете совокупность физических и химических свойств горных пород приводит к тому, что породы более стойкие образуют, как правило, положительные формы рельефа менее стойкие —отрицательные. Следует еще раз подчеркнуть, что относительная стойкость породы зависит не только от ее свойств обусловленных химическим и минералогическим составом. В значительной мере она определяется условиями окружающей среды-одна и та же горная порода в одних условиях может выступать как стойкая, в других —как податливая. Поэтому, как справедливо отмечает И. С. Щукин, если мы хотим учесть морфологическое значение тех или других пород в формировании рельефа исследуемой территории, необходимо взвесить каждое из свойств и совокупное их выражение в условиях конкретной физико-географической обстановки. РЕЛЬЕФ И ГЕОЛОГИЧЕСКИЕ СТРУКТУРЫ Горные породы с характерными для них свойствами находятся в земной коре в самых разнообразных условиях залегания и в различных соотношениях друг с другом, определяя геологическую структуру того или иного участка литосферы. Благодаря избирательной (селективной) денудации, обусловленной свойствами горных пород, под воздействием экзогенных процессов происходит препарировка геологических структур. В результате возникают формы рельефа, облик которых в значительной мере предопределен структурами, поэтому такие формы рельефа называются структурными. Таким образом, свойства горных пород, их различная устойчивость по отношению к воздействию внешних сил находят отражение в рельефе через геологические структуры. В этом и заключается роль геологических структур как одного из важнейших факторов формирования рельефа. Различные структуры обусловливают различные типы структурно-денудационного рельефа, возникающего на месте их развития Различия проявляются даже в том случае, когда структуры подвергаются воздействию одного и того же комплекса внешних сил Однако облик структурно-денудационного рельефа, размеры отдельных структурных форм зависят не только от типа геологической структуры, но также от характера и интенсивности воздействия внешних сил, от степени устойчивости слагающих структуру пластов, от мощности и, как следствие этого, частоты чередования пластов, сложенных породами различной стойкости. В случае лито-логической однородности толщ, слагающих структуры, последние находят слабое отражение в рельефе. Рассмотрим некоторые типы геологических структур с точки зрения влияния их на облик структурно-денудационного рельефа Широким распространением пользуется горизонтальная стриктура, свойственная верхнему структурному этажу платформ (платформенному чехлу), сложенному осадочными, реже вулканическими породами. Горизонтальным структурам в рельефе соответствуют плоские равнины и плато (плато Устюрт) или так называемые 28 столовые страны (Тургайская столовая страна). При эрозионном расчленении столовых структур, в строении которых принимают участие стойкие породы, возникает плоскогорный тип рельефа. Такой рельеф характеризуется плоскими междуречьями (бронированными стойкими пластами), которые резко переходят в крутые склоны речных долин и других эрозионных форм рельефа. Примером этого типа рельефа может служить центральная часть Ставропольской возвышенности. В условиях тектонического покоя и длительного воздействия эрозионно-денудационных процессов плоскогорный рельеф может превратиться в рельеф островных столово- останцовых возвышенностей, в котором отрицательные формы рельефа занимают значительно большие площади, чем положительные (рис. 4). Рельеф столово-останцовых возвышенностей широко развит в Африке, а на территории СССР в ряде мест —по периферии плато Устюрт, по правобережью реки Амударьи, севернее г. Чарджоу. В случае чередования (по вертикали) стойких и податливых пород, залегающих горизонтально, возникает пластово-ступенча-тый рельеф. На склонах эрозионных форм при этих условиях образуются так называемые структурные террасы (рис. 5^). При моноклинальном залегании чередующихся стойких и податливых пластов под воздействием избирательной денудации вырабатывается своеобразный структурно-денудационный рельеф получивший название куэстового. Куэста — грядообразная возвышенность с асимметричными склонами: пологим, совпадающим с углом падения стойкого пласта (структурный склон), и крутым, срезающим головы пластов (аструктурный склон, рис. 6). Размеры куэстовых гряд могут сильно варьировать в зависимости от абсолютной высоты местности и глубины эрозионного рас-чления, мощности стойких и податливых пластов и углов их падения, в одних случаях —это высокие горные хребты (Скалистый хребет северного склона Большого Кавказа), в других — небольшие гряды с относительными превышениями 10—20 м. Весьма своеобразен рисунок и характер эрозионной сети в условиях куэстового рельефа. В зависимости от соотношения речных долин с элементами куэстового рельефа и элементами залегания пластов горных пород различают долины консеквентные и еуб» секвентные. Консеквентные долины совпадают с общим наклоном топографической поверхности и с направлением падения пластов, Субсеквентными называют долины рек, направление которых совпадает с простиранием моноклинально залегающих пластов. Вследствие этого они перпендикулярны консеквентным долинам. Вырабатывая продольные долины вдоль выхода пластов податливых пород и как бы соскальзывая при врезании по кровле более-стойких пластов, субсеквентные долины характеризуются четко, выраженным асимметричным поперечным профилем. На склонах долин субсеквентных рек могут возникать притоки. Долины притоков, стекающих по более длинным и пологим (структурным) склонам куэст, получили название ресеквентных; долины противоположно направленных притоков, стекающих с коротких и крутых аструктурных склонов куэст,— обсеквентных. Сочетание всех названных типов долин образует в плане четко выраженный дважды перистый рисунок речной сети, весьма характерный для куэстовых областей. При больших углах наклона, частом чередовании стойких и податливых пластов и значительном эрозионном расчленении территории отпрепарированные моноклинальные гряды распадаются на отдельные массивчики, принимающие в плане треугольную форму и накладывающиеся друг на друга в виде черепицы. Такой рельеф И. С. Щукин называет шатровым или чешуйчатым. Моноклинальное залегание пластов свойственно крыльям и пе-риклиналям крупных антиклинальных складок. И если в их строе- «ии участвуют породы различной стойкости, то в результате избя-пательной денудации возникают куэсты или моноклинальные гря-яы пространственное положение которых дает возможность судить о (Ьооме складок в плане. Своими крутыми склонами куэсты всегда обращены к ядрам антиклиналей. Сходная картина образования куэст может наблюдаться по периферии соляных куполов и в осадочном чехле лакколитов. Долинная сеть, возникающая в _таких условиях в плане имеет кольцевидный или «вилообразный» ри- сунок. суник. В случае очень крутого падения пластов или вертикального их залегания образуются (в отличие от типичных куэст) симметричные гряды, вытянутые по простиранию стойких пластов. Между грядами по простиранию податливых пластов закладывается параллельная эрозионная сеть. Более сложный рельеф возникает на месте складчатых структур, для которых характерны частые изменения направления и угла падения пластов в зависимости от формы складок в профиле и плане я от их размеров. Характер рельефа складчатых областей во многом определяется также составом пород, смятых в складки, глубиной расчленения и длительностью воздействия экзоген- ных сил. При этом могут возникать самые разнообразные соотношения между формами рельефа и складчатыми структурами, на которых эти формы образуются. В одних случаях наблюдается соответствие между типом геологической структуры и формой рельефа, т. е. антиклиналям (положительным геологическим структурам) соответствуют возвышенности или хребты, а синклиналям (отрицательным геологическим структурам) —понижения в рельефе. Такой рельеф получил название прямого. Однако такие формы рельефа на суше встречаются довольно редко. На территории СССР примером таких форм являются небольшие возвышенности, соответствующие брахиантиклиналыным складкам на Керченском, Таманском и (реже) Апшеронском полуостровах. Встречаются такие формы рельефа в пределах молодых складчатых гор. Значительно чаще в складчатых областях развит так называемый обращенный или инверсионный рельеф, характеризующийся обратным соотношением между топографической поверхностью ч геологической структурой. На месте положительных геологических структур образуются отрицательные формы рельефа, и наоборот (рис. 7). Объясняется это тем, что ядра антиклиналей начинают разрушаться под действием процессов денудации раньше, чем осевые части синклиналей. Кроме того, вследствие повышенной раздробленности пород, возникающей в ядрах антиклиналей при изги- бе пластов, разрушение их под действием внешних сил происходит интенсивнее. Описанные выше структуры могут быть осложнены разломами, по которым блоки земной коры смещаются относительно друг друга в вертикальном или горизонтальном направлениях, оказывая существенное влияние на формирование и облик возникающего при этом рельефа. Структуры земной коры становятся еще более сложными под воздействием интрузивного и эффузивного магматизма, приводящего к возникновению самых разнообразных взаимоотношений между пластами осадочных пород и магматическими телами, непосредственно отражающимися в рельефе, или под воздействием последующих денудационных процессов (см. главу 6). Влияние геологических структур на формирование рельефа и их отражение в рельефе от места к месту не остается одинаковым и зависит как от соотношения взаимодействия эндогенных и экзогенных процессов, так и от конкретных физико-географических условий. Наиболее четко структурность рельефа проявляется на территориях, испытывающих тектонические поднятия (где превалируют процессы денудации), особенно в условиях засушливого климата. Понимание взаимосвязей, существующих между рельефом и геологическими структурами, имеет большое научное и практическое значение. Зная, какое влияние оказывают на облик рельефа те или иные геологические структуры в сочетании с тектоническими движениями, можно воспользоваться методом от противного: по характеру рельефа судить о геологических структурах, направлении и интенсивности тектонических движений отдельных участков земной коры. Выявление глубинного строения земной коры геоморфологическими методами в последнее время получило широкое развитие в практике геолого-съемочных и геолого-поисковых работ. Особенно перспективными геоморфологические методы оказались при поисках нефтегазоносных структур, поэтому не случайно примерно 15—20 лет назад возникло новое научное направление в геоморфологии — структурная геоморфология. Понимание взаимосвязей между геологическими структурами и рельефом позволяет не только объяснить особенности морфологии современного рельефа тех или иных участков земной поверхности, но и определить дальнейшее направление его развития, т. е. дает возможность для геоморфологического прогноза.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|