Рельеф и геологические структуры 7 Глава
На шельфе широко распространены также различные формы рельефа, образованные современными субаквальными процессами— волнением, приливными и другими течениями (см. о них в гл. 19). В тропических водах в пределах шельфа весьма типичны коралловые рифы — формы рельефа, созданные колониями коралловых полипов и известковых водорослей (см. гл. 20). Прибрежные участки дна, прилегающие к островам переходной зоны или имеющие океаническую структуру, выравненные и относительно мелководные, также обычно называют шельфом. Эта разновидность шельфов занимает незначительную площадь, составляющую, вероятно, всего несколько процентов от всей площади шельфа, в основном имеющего платформенную структуру. Материковый склон. Более или менее узкая зона морского дна ниже (глубже) бровки шельфа, характеризующаяся относительно крутым уклоном поверхности, представляет собой материковый склон. Средний угол уклона материкового склона — 5—7°, а нередко 15—20°. Известны отдельные участки материковых склонов, где уклон превышает 50°. В большинстве случаев материковый склон имеет ступенчатый профиль, и большие уклоны приходятся ТТЭ VPTVnKT как раз на yuiyum мсл\д\у ступенями. Дно между уступами имеет вид наклонной равнины. Иногда ступени бывают очень широкими (десятки и сотни километров). Их называют краевыми плато материкового склона. Типичным примером краевого плато является подводное тшато Блейк, расположенное к востоку от Флориды (рис. 23). Оно отделяется от шельфа на глубинах около 100 м уступом и дальше простирается в виде широкой наклонной к востоку ступени до глубины 1500 м, где заканчивается очень крутым уступом, уходящим на большую глубину (более 5 км). У материкового склона Аргентины насчитывается до десятка таких (правда, 'более узких) ступеней.
В пределах материкового склона довольно широко распространены расчленяющие его икр ест простирания поавоаные каньоны. Эти глубоко врезанные ложбины иногда располагаются так часто, что придают в плане бровке шельфа облик бахромы (рис. 24). Глубина вреза многих каньонов достигает 2000 м, а протяженность наиболее крупных из «их — сотен километров. Склоны каньонов крутые, поперечный профиль нередко V-образный. Уклоны продольного профиля подводных каньонов в верховьях в среднем 0,12, в средних отрезках — 0,07, в нижних — 0,04. Многие каньоны имеют ответвления, извилисты, чаще довольно прямолинейны. Они прорезают весь материковый склон, а наиболее крупные продолжаются и глубже основания склона. В устьях каньонов обычно отмечаются крупные аккумулятивные формы — конусы выноса. Подводные каньоны очень напоминают речные долины или Однако при определенных чертах сходства есть и заметные различия между подводными каньонами и речными долинами. Прежде всего, продольный профиль большинства каньонов гораздо круче, чем профиль горных речных долин. Нередко в каньонах наблюдаются значительные обратные уклоны, что также не согласуется с гипотезой их речного происхождения. Бросается в глаза также то обстоятельство, что многие подводные каньоны располагаются как бы на продолжении равнинных рек, а сами по облику близки к горным долинам и характеризуются очень глубоким врезанием в породы, слагающие материковый склон.
Большинство каньонов заканчиваются на глубинах 3000 и более метров. Если принять речную гипотезу их образования, то при- 82
дется допустить, что уровень океана когда-то был на три и более километра ниже современного, причем геологически недавно — в четвертичное время или в плиоцене, так как некоторые каньоны прорезают очень молодые —палеогеновые и даже миоценовые породы. Однако в соответствии с современными представлениями о масштабах четвертичного оледенения уровень океана в плейстоцене не снижался более чем на 100—110 м. Считать же, что все подводные каньоны оказались на такой большой глубине вследствие тектонического опускания нижних отрезков речных долин тоже нельзя, так как они имеют повсеместное распространение. Кроме того, даже такое допущение не объясняет их глубокой вре-занности. Вопрос о происхождении подводных каньонов должен рассматриваться совместно с вопросом о генезисе и тектонической природе материкового склона. Можно считать, что материковый склон в своей основе — это система ступенчатых сбросов, образовавшихся в результате скалывания края материкового выступа, оказавшегося в (пограничной зоне между областью с тенденцией к поднятию или слабому погружению — материковой платфор- иию — материковой нлатфир- мой и областью с тенденцией к значительному погружению — ложам океана. Скалывание и возрастание тенденции к погружению по направлению к ложу океана и обусловили ступенчатый профиль материкового склона. Одновременно возникающие в земной коре напряжения находили разрядку я другим путем —в образовании радиальных разломов, рассекающих материковый склон вкрест его простирания. Такими радиальными разломами.и образованы подводные каньоны, которые в одних случаях унаследовали гигантские зияющие трещины в земной коре, а в других — узкие грабены, выкроенные по близко располагающимся радиальным разломам (рис. 25). Геофизические и геологические данные говорят в пользу того, что материковому склону свойственна земная кора материкового типа. Образцы коренных пород, взятые в подводных каньонах и на ступенях материкового склона с исследовательских судов с помощью специальных приборов — драг, показали, что это породы того же состава и возраста, что и на прилегающей суше и на шельфе. Наиболее убедительно геологическое, а следовательно, и геоморфологическое единство материковых платформ суши, шельфа и материкового склона было доказано подводным бурением. Геологический профиль, построенный по данным морских скважин в районе плато Блейк, свидетельствует о том, что геологические
напластования, слагающие прибрежную равнину, прослеживаются как в пределах шельфа, так и на материковом склоне. Для многих районов материкового склона (например, в Мексиканском заливе, в Средиземном море) характерны бугристые формы рельефа, обусловленные соляной тектоникой. Иногда встречаются также вулканические и грязевулканические образования. Материковое подножье. Материковое подножье наряду с шельфом и материковым склоном — крупнейшая форма рельефа подводной окраины материка. В рельефе дна морей и океанов материковое подножье в большинстве случаев выражено наклонной равниной, прилегающей к основанию материкового склона и протягивающейся полосой в несколько сотен километров ширины между последним и ложем океана. Равнина имеет максимальный уклон (до 2,5°) вблизи основания материкового склона. С увеличением,глубин она постепенно выполаживается и заканчивается на глубинах -порядка 3,5—4,5 км. Поверхность равнины при пересечении ее по простиранию, т. е. вдоль основания материкового склона, слегка волниста,. Местами она прорезана крупными подводными каньонами,, Значительная часть поверхности равнины образована конусами выноса, располагающимися у устьев крупных подводных каньонов. В верхней части поперечного профиля материкового подножья нередко отмечается характерный холмисто-западинный рельеф, сильно напоминающий оползневый рельеф суши, только представленный более крупными формами. Вообще материковое подножье в его типическом выражении — по преимуществу аккумулятивное образование. Как свидетельствуют данные геофизических исследований, покров морских отложений на дне океана достигает максимальной мощности именно на материковом подножье. Если в среднем в океане мощность рыхлых осадков редко превышает 500 м, то на материковом подножье она достигает 5 км.
С помощью глубинного сейсмического зондирования выяснено, что структура материкового подножья характеризуется глубоким прогибом земной коры, и большая мощность осадков, здесь возникает именно в результате заполнения этого прогиба. Главный источник поступления осадочного материала — продукты разрушения пород суши, выносимые реками в пределы шельфа, откуда этот материал в огромных количествах выносится в результате подводного оползания масс осадков и действия мутьевых потоков. О мутьевых потоках более подробно говорится в главе 20, здесь же отметим, что подводные каньоны служат трассами для наиболее мощных из них, которые и создают огромные конусы выноса в устьях подводных каньонов. Вся аккумулятивная равнина материкового подножья может таким образом рассматриваться как огромный шлейф из осадков, накапливающихся у основания материкового склона. Глубинное сейсмическое зондирование показывает, что под мощной толщей отложений все еще продолжается кора материкового типа, хотя мощность ее здесь заметно уменьшается (рис. 26). При- сутствие гранитного слоя в земной коре, слагающей материковое подножье, дает основание считать его наряду с шельфом и материковым склоном одним из крупных элементов подводной окраины [материка. Вместе с тем материковое подножье — прежде всего аккумулятивное образование, поэтому нередки случаи распростра* нения его в пределы развития океанической земной коры. В некоторых районах строение материкового подножья заметно отличается от описанного. Например, к востоку от уже упоминавшегося плато Блейк материковое подножье в рельефе океанского дна выражено очень глубокой впадиной (до 5,5 км глубины), при- легающей в виде узкой полосы к подножью плато. По-видимому, это структурный прогиб типичный для глубинной структуры материкового подножья, но еще не заполненный осадками. В западной части Средиземного моря материковое подножье выражено холмистым или низкогорным рельефом, обусловленным развитием солянокупольных структур. Бордерленды и микроконтиненты. На некоторых участках подводная окраина материка настолько раздроблена разрывными тектоническими нарушениями, что здесь практически невозможно выделить такие элементы, как шельф, материковый склон, материковое подножье. Так, у берегов Калифорнии переход от материка к океану представлен широкой полосой дна с очень пересеченным рельефом. Крупные возвышенности с плоскими вершинами и крутыми склонами чередуются с такими же по размеру и очертаниям впадинами. Этот рельеф, по-видимому, возник в результате проявления очень интенсивных тектонических процессов, обусловивших дробление подводной окраины материка на ряд горстов и грабенов. Такие раздробленные участки подводной окраины материков получили название бордерленда.
О и В пределах океанов иногда встречаются подводные или надвод-гные возвышенности, сложенные корой материкового типа, но не связанные с материками. Они отделены от материков обширными пространствами дна с океаническим типом земной коры. Таковы, например, Сейшельские острова и их подводное основание — Сейшельская банка (западная часть Индийского океана). Еще более крупное образование этого рода Новозеландское подводное плато вместе с южной частью Новой Зеландии. В последние годы появилось также предположение, что Западноавстралийские подводные горы в Индийском океане также сложены корой материкового типа. Некоторые исследователи такие изолированные массивы материковой земной коры рассматривают как остатки более обширных когда-то материковых платформ, ныне погрузившихся на дно океана. В принципе, однако, возможно и обратное предположение: быть может, это участки, где начался процесс образования материковой коры, но по каким-то причинам не получил дальнейшего развития. Такие участки называют микроконтинентами. Глава 10. МЕГАРЕЛЬЕФ ГЕОСИНКЛИНАЛЬНЫХ ОБЛАСТЕЙ <ПЕРЕХОДНЫХ ЗОН) Термин «геосинклинальные области» был введен в науку Д. А. Архангельским, который стремился подчеркнуть сложность строения ■поясов горообразования. В последнее время в геоморфологической литературе широко применяется как синоним этого понятия термин «переходная зона». Смысл последнего термина двузначный: во-первых, в нем содержится указание на то, что речь идет об областях, лежащих между материками и океанами, во-вторых, такое наименование подразумевает, что здесь в процессе исторического развития структуры земной коры происходит переход одного типа земной коры в другой. Под современными переходными зонами, или геосинклинальными областями, мы понимаем области современного горообразования, протекающего на стыке материков и океанов. Наиболее ярко эти зоны выражены на окраинах Тихого океана. Две переходные области имеются в краевых частях Атлантики — это области Карибского моря и моря Скоша. Одна из переходных областей —■ Индонезийская — расположена частично на окраине Тихого, частично— на окраине Индийского океанов. Реликты обширной геосинклинальной области мы находим также в западной части так называемого Альпийского пояса горообразования, протягивающегося от Канарских островов до пересечения, с Индонезийской переходной областью. Эта переходная зона формировалась в пределах ныне не существующего океана Тетис, некогда отделявшего Африку и Индостан от Евразиатской платформы. О пестроте и своеобразии строения земной коры в современных геосинклинальных областях говорилось выше. Столь же сложен и своеобразен мегарельеф перехс ском выражении рельеф перехода основными элементами: а) котловина окраинного глубокого моря, б) островная дуга, в) глубоководный желоб. Островной дугой называют подводный хребет с отдельными торчащими над водой вершинами — островами, отделяющий морскую котловину со стороны океана от глубоководного желоба — узкой замкнутой депрессии, расположенной «а границе переходной зоны и ложа океана. Яркими примерами такого рода сочетаний являются: южная котлов'ина Охотского моря — Курильская островная дуга — Курило-Камчатский желоб; Японское море — Японские острова — Японский глубоководный желоб и др. (рис.27). Котловины окраинных морей имеют глубины, как правило, 2—3,5 км, а иногда и более 4 км. Высоты горных вершин некоторых островных дуг достигают 4,5 км. Самые крупные глубоководные желоба имеют глубины 8—10, а Марианский желоб — даже 11 км. Таким образом, переходная зона — это зона поверхности Земли, характеризующаяся максимальным вертикальным расчленением рельефа, что свидетельствует о максимальной интенсивности и контрастности вертикальных движений земной коры в пределах этой зоны. Все геосинклинальные области одновременно являются поясами высокой степени сейсмичности. Большая часть катастрофических и разрушительных землетрясений происходит и Отмечается определенная закономерность в распределении глубинных очагов землетрясений. Поверхностные землетрясения (или коровые) с глубиной залегания очагов (фокусов) от нескольких километров до 60 км располагаются под днищами глубоководных желобов. Более глубокие — так называемые среднефокусные землетрясения имеют центры под островными дугами и частично под •котловинами окраинных морей. Наконец, глубокофокусные землетрясения, очаги которых лежат на глубине 300—700 км, имеют свои центры под котловинами окраинных морей или даже под приле-тающей сушей. Таким образом, все очаги землетрясений в переходных зонах оказываются приуроченными к некоторым наклонен- ным в сторону материков зонам весьма неустойчивого состояния ■не только земной коры, но и мантии Земли (рис. 28). Эти зоны получили наименование зон Бениоффа-Заварицкого и могут рассматриваться как сверхглубинные разломы. Переходные зоны — зоны современного вулканизма. Характерная особенность вулканизма переходных областей — преимущественно андезитовый или (реже) липаритовый состав продуктов извержения. Такая особенность наиболее свойственна современному вулканизму зрелых переходных областей, т. е. тех, которые пережили весьма длительную историю развития. В более древних продуктах извержения вулканов переходных зон господствуют базальты и присутствуют также ультраосновные породы. В наиболее молодых геосинклинальных областях, только еще формирующихся, вулканизм характеризуется базальтовым составом выбрасываемого материала (острова Тонга и др.). МОРФОЛОГИЯ ГЛУБОКОВОДНЫХ ЖЕЛОБОВ Глубоководные желоба представляют собой узкие депрессии — прогибы в земной коре, имеющие в плане чаще всего дугообразную форму. В настоящее время известно 35 глубоководных желобов, из них 28 —в Тихом океане. Пять желобов имеют глубины более 10 000 м, из них Марианский —более 11000 м. Поперечный профиль глубоководного желоба близок к V-образному, но всегда имеется хотя бы узкая полоска плоского дна. На примере Курило-Кам-чатского желоба, особенно детально обследованного советскими исследователями, можно видеть, что крутизна склонов желоба нарастает по мере приближения к его днищу: в верхней части склона она равна 5—6°, а в нижней достигает 25°. Склоны ступенчаты и изборождены подводными каньонами. Нередко склоны желобов резко асимметричны. Так, у Курило-Камчатекого и желоба Тонга западные склоны более высокие и крутые. Некоторые желоба выделяются своей сравнительно малой глубиной. Например, Яванский и Банда имеют глубины меньше 7500 м, Центральноамериканский, Витязя, Западномеланезийский и Ново-Гвинейский —меньше 7000 м, а Хикуранга, Тиморский и Кай —даже меньше 4000 м. Во всех этих желобах отмечается уменьшение крутизны склонов и возрастание мощности осадочного слоя на дне желоба. Следовательно, меньшие глубины в этих желобах в значительной мере определяются накоплением в них мощного осадочного слоя. Изучение силы тяжести в районе желобов показало, что им свойственны большие отрицательные гравитационные аномалии, которые могут достигать—150 и даже —200 мгал. Глубокий прогиб и частичное заполнение его рыхлыми осадками, более легкими по сравнению с кристаллическими слоями земной коры, создают эффект дефицита массы и как следствие отрицательную аномалию силы тяжести. Характерными геофизическими особенностями глубоководных желобов являются также низкие (менее 1 мккал на 1 см2 в секунду) значения теплового потока, т. е. количества тепла, поступающего из недр Земли к ее поверхности. К глубоководным желобам приурочено большое число эпицентров неглубоких землетрясений. К ним же приурочено подавляющее количество разрушительных землетрясений. МОРФОЛОГИЯ ОСТРОВНЫХ ДУГ Островные дуги представляют собой огромные хребты или кор-дильеры, обычно протягивающиеся вдоль внутренней стороны глубоководного желоба. Если желоб рассматривать как геосинклинальный прогиб, то островная дуга —это геоантиклинальное поднятие, возникшее как результат складчатости и общего поднятия на месте бывшего геосинклинального прогиба. Глубинная структу- pa островной дуги — вал базальтовой коры, на который как бы.насажен слой вулканических и осадочных пород, а в случае зрелой стадии островной дуги — гранитный слой. Для островных дуг характерен современный вулканизм центрального типа, многочисленные вулканы с андезитовым или липаритовым составом лав. Расположение вулканов на островных дугах подчинено определенным закономерностям. Островные дуги обычно разбиты глубокими разломами, имеющими поперечное или близкое к поперечному простирание. Именно на пересечениях оси островных дуг с этими разломами и располагаются крупнейшие действующие вулканы. Нередко разломы выражены в рельефе морского дна в виде ■очень глубоких проливов (проливы Фриза, Буссоль в Курильской Дуге). В ряде случаев островные дуги бывают представлены двойной •системой, в которой различаются внутренняя и внешняя дуги, параллельные друг другу и с депрессией между ними. Так, например, устроена Курильская дуга. Внутренняя гряда соответствует собственно Курильским островам и их подводному основанию, а внешняя представляет собой подводный хребет Витязя. Лишь на самом юге здесь имеются острова (Малые Курильские). Обе гряды продолжаются на суше, на п-ве Камчатка. Внутренней гряде соответствуют структуры Срединного Камчатского хребта, с которым связаны крупнейшие действующие вулканы Камчатки, а внешней — блоковые структуры гор полуостровов восточной Камчатки. На примере Камчатки видно, что на определенной стадии развития островные дуги могут слиться друг с другом, образовав единый массив суши. Японские острова, например, представляют собой крупный массив суши, образовавшийся в результате слияния нескольких островных дуг разного возраста. Типичным примером такого массива суши является также остров Куба, образовавшийся в результате слияния трех равновозрастных островных дуг. Молодой островной дугой являются Малые Антильские острова, которые, как и Курильская островная дуга, образуют две гряды — внутреннюю и внешнюю. Малоантильская дуга сочленяется с лежащим к северу и северо-востоку от нее глубоководным желобом Пуэрто-Рико, к которому приурочена максимальная глубина Атлантического океана. Добавим, что островным дугам присущи высокие значения теплового потока (5—8 мккал/см2-с), небольшие положительные аномалии силы тяжести. Большинство островных дуг находится в зоне 9-балльных землетрясений. Для них характерны также резко дифференцированные, с большими скоростями вертикальные движения земной коры.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|