Проектный расчет валов редуктора.
В процессе эксплуатации валы передач испытывают деформации от действия внешних сил, масс самих валов и насаженных на них деталей. Однако в типовых передачах, разрабатываемых в курсовых проектах, массы валов и деталей, насаженных на них, сравнительно невелики, поэтому их влиянием обычно пренебрегают, ограничиваясь анализом и учетом внешних сил, возникающих в процессе работы. Для выполнения расчета вала необходимо знать его конструкцию (места приложения нагрузки, расположение опор и т.д.). В то же время разработка конструкции вала невозможна без хотя бы приближенной оценки его диаметра. На практике обычно используют следующий порядок расчета вала. Расчет редукторных валов производится в два этапа: 1-й – проектный (приближенный) расчет валов на чистое кручение; 2-й – проверочный (уточненный) расчет валов на прочность по напряжениям изгиба и кручения.
4.1. Определяем силы в зацеплении редуктора согласно таблице 4.1. Таблица 4.1. Силы, действующие в зацеплении.
4.2. Выбор материала вала В проектируемых редукторах рекомендуется применять термически обработанные среднеуглеродистые и легированные стали 40, 45, 40Х, одинаковые для быстроходного и тихоходного вала. Механические характеристики сталей для изготовления валов (σ H, σ F, σ -1) определяют по табл. 2.2.
4.3. Выбор допускаемых напряжений на кручение Проектный расчет валов выполняется по напряжениям кручения (как при чистом кручении), т. е. при этом не учитывают напряжения изгиба, концентрации напряжений и переменность напряжений во времени (циклы напряжений). Поэтому для компенсации приближенности этого метода расчета допускаемые напряжения на кручение применяют заниженными: [τк] = 10...20 МПа. При этом меньшие значения [τк] – для быстроходных валов, большие [τк] – для тихоходных.
4.4. Определим диаметр выходного конца вала из расчета на чистое кручение по пониженному допускаемому напряжению без учета влияния изгиба: , (4.1) Полученный результат округляют до ближайшего значения из стандартного ряда: 10; 10,5; 11; 11,5; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 24; 25; 26; 28; 30; 32; 33; 34; 36; 38; 40; 42; 45; 48; 50; 52; 55; 60; 63; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 120; 125; 130; 140 мм и далее через 10 мм. Примечание. В случае необходимости допускаются диаметры: в интервале от 12 до 26 мм – кратные 0,5; в интервале 26-30 мм – целые числа; в интервале 50-110 мм – размеры, оканчивающиеся на 2 и 8; далее – размеры, кратные 5. 4.5. Проектный расчет ставит целью определить ориентировочно геометрические размеры каждой ступени вала: ее диаметр d и длину l. Редукторный вал представляет собой ступенчатое цилиндрическое тело, количество и размеры ступней которого зависят от количества и размеров деталей, установленных на вал (рис. 4.1). Рис. 4.1. – Типовые конструкции валов одноступенчатых редукторов: а – быстроходный червячного; б – быстроходный цилиндрического; в – быстроходный конического; г – тихоходный (l 3* – в коническом редукторе) Для редукторов общего назначения рекомендуется изготавливать валы одинакового диаметра по всей длине; допуски на отдельных участках вала назначают в соответствии с требуемыми посадками насаживаемых деталей. Однако для облегчения монтажа подшипников, зубчатых колес и других деталей применяют и ступенчатую конструкцию вала. Для удобства соединения вала редуктора с валом электродвигателя стандартной муфтой соблюдают условие, чтобы диаметры соединяемых валов имели размеры, отличающиеся друг от друга не более чем на 20 %.
Имея значение диаметра выходного конца вала, переходят к его конструированию, т.е. определяют все диаметральные и линейные размеры вала по таблице 4.2. Таблица 4.2. Определение размеров ступеней валов одноступенчатых редукторов, мм
Примечания: 1. Значения высоты t заплечика (буртика) и f величины фаски ступицы колеса и координаты фаски r max подшипника определяют в зависимости от диаметра ступени d по следующей таблице: Таблица 4.3.
2. Диаметр d 1 выходного конца быстроходного вала, соединённого с двигателем через муфту, определить по соотношению d 1 = (0,8...1,2)· d 1(дв), где d 1(дв) − диаметр выходного конца вала ротора двигателя (см. табл. 1.2). 3. Диаметры и длины ступеней валов d, l округлить до ближайших стандартных чисел, определяя диаметр каждой последующей ступени по стандартному значению диаметра предыдущей. Диаметры d 2 и d 4 под подшипник принять равными диаметру внутреннего кольца подшипника d п по табл. 4.6…4.8. Стандартные значения диаметров и длин остальных ступеней принять по таблице 4.5.
Таблица 4.4
4. Если на выходном валу редуктора консольно установлены цепная звёздочка или шкив ремённой передачи, то расчётный минимальный диаметр по формуле (4.1) в таблице 4.2 будет под этой звёздочкой, а остальные пойдут на увеличение.
Таблица 4.5 Нормальные линейные размеры (ГОСТ 6636-69), мм
4.6. Предварительный выбор подшипников качения Выбор наиболее рационального типа подшипника для данных условий работы редуктора весьма сложен и зависит от целого ряда факторов: передаваемой мощности редуктора, типа передачи, соотношения сил в зацеплении, частоты вращения внутреннего кольца подшипника, требуемого срока службы, приемлемой стоимости, схемы установки.
На торцах колец или на поверхности наружного кольца указывается условное обозначение типоразмера подшипников качения по ГОСТ 3189-89. Полное условное обозначение подшипника состоит из основного обозначения (7 знаков) и дополнительных знаков, расположенных слева и справа от основного обозначения. Схема основного обозначения подшипников качения с d≥10 мм (кроме d = 22; 28; 32; 500 и более мм): позиции 7 6 5 4 3 2 1
Х Х Х Х Х Х Х серия конструктивное тип серия диаметр ширин исполнение диаметров отверстия
1. Диаметр отверстия (1 и 2-я позиции справа) обозначают цифрами, равными d /5, начиная с d =20 мм (20:5=04). При d =10 мм – обозначение 00, d = 12 мм – 01, d = 15 мм – 02, d = 17 мм – 03. Диаметры 22, 28, 32, 500 и более мм обозначают цифрами d через дробь. Например, 802/32 (d =32 мм); 20071/1100 (d =1100 мм). 2. Размерные серии: 3-я цифра справа – серия диаметров, 7-я – серия ширины. Например, 3182120 (серии: особолегкая – 1, особоширокая – 3). 3. Четвертая цифра справа определяет ТИП подшипника, 5-я и 6-я цифры (от 00 до 99) представляют конструктивное исполнение типа по ГОСТ 3395-89. Предварительный выбор подшипников для каждого из валов редуктора проводится в следующем порядке: 1. В соответствии с табл. 4.6 определить тип, серию и схему установки подшипников.
Таблица 4.6. Предварительный выбор подшипников
Примечание: Радиальные шариковые однорядные подшипники (табл. 4.6); радиально-упорные шарикоподшипники (табл. 4.7); конические роликоподшипники (табл. 4.8).
2. Выбрать из табл. 4.7...4.9 типоразмер подшипников по величине диаметра d внутреннего кольца, равного диаметру второй d 2и четвертой d 4ступеней вала под подшипники. 3. Выписать основные параметры подшипников: геометрические размеры – d, D, В (Т, с); динамическую Сr и статическую С0r грузоподъемности. Здесь D –диаметр наружного кольца подшипника; В –ширина шарикоподшипников; Т и с –осевые размеры роликоподшипников.
Таблица 4.7. Подшипники шариковые радиальные однорядные (по ГОСТ 8338-75)
Таблица 4.8. Подшипники шариковые радиально-упорные однорядные (по ГОСТ 831-75)
Таблица 4.9. Подшипники роликовые конические однорядные (по ГОСТ 27365-87)
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|