Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Прямоугольное (ортогональное проецирование) проецирование




 

Частный случай параллельного проецирования, при котором направление проецирования перпендикулярно плоскости проекций, называется прямоугольным или ортогональным проецированием. Прямоугольной (ортогональной) проекцией точки называют основание перпендикуляра, проведенного из точки на плоскость проекций. Прямоугольная проекция точек А и В показана на рис. 1.5.

Наряду со свойствами параллельных (косоугольных) проекций ортогональное проецирование имеет следующее свойство:

- ортогональные проекции взаимно перпендикулярных прямых, одна из которых параллельна плоскости проекций, а другая не перпендикулярна ей, взаимно перпендикулярны.

 
 

Для определения положения точки в пространстве по ее параллельным проекциям необходимо иметь две параллельные плоскости, полученные при двух направлениях проецирования.

 

Рис. 1.5 Рис. 1.6

Т.к. через точку можно провести только одну прямую, перпендикулярную плоскости, то, очевидно, при ортогональном проецировании для получения двух проекций одной точки необходимо иметь две не параллельные плоскости проекций (рис. 1.6).

Ортогональное проецирование обладает рядом преимуществ перед центральным и параллельным проецированием. К ним в первую очередь следует отнести:

1. Простоту графических построений для определения ортогональных проекций точек.

2. Возможность при определенных условиях сохранить на проекциях форму и размеры проецируемой фигуры.

Отмеченные преимущества обеспечили широкое применение ортогонального проецирования в технике, в частности, для составления машиностроительных чертежей.

В машиностроении, для того чтобы иметь возможность по чертежу судить о форме и размерах изображаемых предметов, при составлении чертежей, как правило, пользуются не двумя, а несколькими плоскостями проекций.

Положение точки в пространстве, а, следовательно, и любой геометрической фигуры может быть определено, если будет задана какая-либо координатная система отнесения.


Плоскости проекции делят пространство на восемь частей – октантов. Их условно нумеруют римскими цифрами (рис. 1.7).

 

Рис. 1.7 Рис. 1.8

 

Наиболее удобной для фиксирования положения геометрической фигуры в пространстве и выявления ее формы по ортогональным проекциям является, декартова система координат, состоящая из трех взаимно перпендикулярных плоскостей проекций. В связи с тем, что начертательная геометрия призвана передавать результаты своих теоретических исследований для практического использования, ортогональное проецирование целесообразно рассматривать также в системе трех плоскостей проекций.

Для удобства проецирования в качестве трех плоскостей проекций выбирают три взаимно перпендикулярные плоскости (рис.1.8). Одну из них принято располагать горизонтально – ее называют горизонтальной плоскостью проекций, другую – вертикально, параллельно плоскости чертежа, ее называют фронтальной плоскостью проекций и третью, перпендикулярную двум имеющимся –ее называют профильной плоскостью проекций. Эти плоскости проекций пересекаются по линиям, называемыми осями проекций.

У нас принята правая система расположения плоскостей проекций. При этом положительными направлениями осей считают: для оси X (пересечение горизонтальной и фронтальной плоскостей проекций) – влево от начала координат, для оси Y (пересечение горизонтальной и профильной плоскостей проекций) – в сторону наблюдателя от фронтальной плоскости проекций, для оси Z (пересечение фронтальной и профильной плоскостей проекций) – вверх от горизонтальной плоскости проекций, противоположные направление осей считают отрицательными.

Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией – соответственно на фронтальной плоскости проекций и профильной – на профильной плоскости проекций.

Пользоваться этим пространственным макетом для изображения ортогональных проекций геометрических фигур неудобно ввиду его громоздкости, а также из-за того, что на отдельных (горизонтальной и профильной) происходит искажение формы и размеров проецируемой фигуры. Поэтому вместо изображения на чертеже пространственного макета пользуются комплексным чертежом (эпюр Монжа) составленным из трех связанных между собой ортогональных проекций геометрической фигуры.

Преобразование пространственного макета в эпюр осуществляется путем совмещения горизонтальной и профильной плоскостей проекций с фронтальной плоскостью проекции (рис. 1.7).

Так как плоскости не имеют границ, в совмещенном положении (на эпюре) границы плоскостей не показывают, нет необходимости оставлять надписи, указывающие положение плоскостей проекций (рис. 1.10).

Перейдя к эпюру утратилась пространственная наглядность. Эпюр дает больше – точность и удобоизмереимость изображений, при простоте построений. Однако, чтобы представить пространственную картину требуется работа воображения.

 

Проецирование точки

 

Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.

В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.

При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.

 


Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответству-

 

Рис. 1.9 Рис. 1.10

 

ющие величины, которые укажут соответственно значения абсциссы X, ординаты Y и аппликаты Z точки (рис. 1.10).

Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а// на профильной плоскости проекций.

Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.

Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.

При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не меняет своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется по направлению движения часовой стрелки и расположится на одном перпендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 1.10. При этом - a // будет принадлежать перпендикуляру к оси Z, проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х. Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков ааy и аy a // и сопрягающей их дуги окружности с центром в точке пересечения осей (О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции (при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 450 из начала координат к оси Y (эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.

Рис. 1.11 Рис.1.12

 

Из этого следует:

1. Точка в пространстве удалена:

от горизонтальной плоскости H на величину заданной координаты Z,

от фронтальной плоскости V на величину заданной координаты Y,

от профильной плоскости W на величину координаты. X.

2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):

горизонтальная и фронтальная – перпендикуляру к оси X,

горизонтальная и профильная – перпендикуляру к оси Y,

фронтальная и профильная – перпендикуляру к оси Z.

3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда можно построить недостающую ее третью проекцию.

Если точка имеет три определенные координаты, то такую точку называют точкой общего положения. Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.

На рисунке 1.11 дан пространственный чертеж точек частного положения, на рисунке 1.12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х).

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...