Кровяное давление в различных отделах системы кровообращения. Факторы, определяющие его величину. Виды кровяного давления. Понятие среднего артериального давления.
Кровяное давление — давление крови на стенки кровеносных сосудов и камер сердца; важнейший энергетический параметр системы кровообращения, обеспечивающий непрерывность кровотока в кровеносных сосудах, диффузию газов и фильтрацию растворов ингредиентов плазмы крови через мембраны капилляров в ткани (обмен веществ), а также в почечных клубочках (образование мочи). В соответствии с анатомо-физиологическим разделением сердечно-сосудистой системы (Сердечно-сосудистая система)различают внутрисердечное, артериальное, капиллярное и венозное К. д., измеряемое либо в миллиметрах водяного столба (в венах), либо миллиметрах ртутного столба (в других сосудах и в сердце). Рекомендуемое, согласно Международной системе единиц (СИ), выражение величин К. д. в паскалях (1 мм рт. ст. = 133,3 Па) в медицинской практике не используется. В артериальных сосудах, где К. д., как и в сердце, значительно колеблется в зависимости от фазы сердечного цикла, различают систолическое и диастолическое (в конце диастолы) артериальное давление, а также пульсовую амплитуду колебаний (разница между величинами систолического и диастолического АД), или пульсовое АД. Среднюю от изменений за весь сердечный цикл величину К. д., определяющую среднюю скорость кровотока в сосудах, называют средним гемодинамическим давлением. Внутрисердечное давление в полостях предсердий и желудочков сердца значительно различается в фазах систолы и диастолы, а в тонкостенных предсердиях оно также существенно зависит от колебаний внутригрудного давления по фазам дыхания, принимая иногда в фазе вдоха отрицательные значения. В начале диастолы, когда миокард расслаблен, заполнение камер сердца кровью происходит при минимальном давлении в них, близком к нулю. В период систолы предсердий отмечается небольшой прирост давления в них и в желудочках сердца. Давление в правом предсердии, в норме не превышающее обычно 2—3 мм рт. ст., принимают за так называемый флебостатический уровень, по отношению к которому оценивают величину К. д. в венах и других сосудах большого круга кровообращения.
В период систолы желудочков, когда клапаны сердца закрыты, практически вся энергия сокращения мускулатуры желудочков расходуется на объемное сжатие содержащейся в них крови, порождающее в ней реактивное напряжение в форме давления. Внутрижелудочковое давление нарастает до тех пор, пока в левом желудочке оно не превысит давления в аорте, а в правом — давления в легочном стволе, в связи с чем клапаны этих сосудов открываются и происходит изгнание крови из желудочков, по окончании которого начинается диастола, и К. д. в желудочках резко падает. Артериальное давление формируется за счет энергии систолы желудочков в период изгнания из них крови, когда каждый желудочек и артерии соответствующего ему круга кровообращения становятся единой камерой, и сжатие крови стенками желудочков распространяется на кровь в артериальных стволах, а изгоняемая в артерии порция крови приобретает кинетическую энергию, равную половине произведения массы этой порции на квадрат скорости изгнания. Соответственно энергия, сообщаемая артериальной крови в период изгнания, имеет тем большие значения, чем больше ударный объем сердца и чем выше скорость изгнания, зависимая от величины и скорости нарастания внутрижелудочкового давления, т.е. от мощности сокращения желудочков. Толчкообразное, в виде удара, поступление крови из желудочков сердца вызывает локальное растяжение стенок аорты и легочного ствола и порождает ударную волну давления, распространение которой с перемещением локального растяжения стенки по длине артерии обусловливает формирование артериального пульса (Пульсация); графическое отображение последнего в форме сфигмограммы или плетизмограммы соответствует и отображению динамики К. д. в сосуде по фазам сердечного цикла.
Основной причиной трансформации большей части энергии сердечного выброса в артериальное давление, а не в кинетическую энергию потока является сопротивление кровотоку в сосудах (тем большее, чем меньше их просвет, больше их длина и выше вязкость крови), формируемое в основном на периферии артериального русла, в мелких артериях и артериолах, называемых сосудами сопротивления, или резистивными сосудами. Затруднение току крови на уровне этих сосудов создает в расположенных проксимально от них артериях торможение потока и условия для сжатия крови в период изгнания ее систолического объема из желудочков. Чем выше периферическое сопротивление, тем большая часть энергии сердечного выброса трансформируется в систолический прирост АД, определяя величину пульсового давления (частично энергия трансформируется в тепло от трения крови о стенки сосудов). Роль периферического сопротивления кровотоку в формировании К. д. наглядно иллюстрируется различиями АД в большом и малом кругах кровообращения. В последнем, имеющем более короткое и широкое сосудистое русло, сопротивление кровотоку значительно меньшее, чем в большом круге кровообращения, поэтому при равных скоростях изгнания одинаковых систолических объемов крови из левого и правого желудочков давление в легочном стволе примерно в 6 раз меньше, чем в аорте. Систолическое АД складывается из величин пульсового и диастолического давления. Истинная его величина, называемая боковым систолическим АД, может быть измерена с помощью манометрической трубки, введенной в просвет артерии перпендикулярно оси тока крови. Если внезапно прекратить кровоток в артерии путем полного пережатия ее дистальнее манометрической трубки (или расположить просвет трубки против тока крови), то систолическое АД сразу возрастает за счет кинетической энергии потока крови. Эту более высокую величину К. д. называют конечным, или максимальным, или полным, систолическим АД, т.к. она эквивалентна практически полной энергии крови в период систолы. И боковое, и максимальное систолическое К. д. в артериях конечностей человека может быть измерено бескровно с помощью артериальной тахоосциллографии по Савицкому. При измерении АД по Короткову определяют значения максимального систолического АД. Величина его в норме в покое составляет 100—140 мм рт. ст., боковое систолическое АД обычно на 5—15 мм ниже максимального. Истинная величина пульсового АД определяется как разница между боковым систолическим и диастолическим давлением.
Диастолическое АД формируется благодаря эластичности стенок артериальных стволов и их крупных ветвей, образующих в совокупности растяжимые артериальные камеры, называемые компрессионными (аортоартериальная камера в большом круге кровообращения и легочный ствол с крупными его ветвями — в малом). В системе жестких трубок прекращение нагнетания в них крови, как это происходит в диастоле после закрытия клапанов аорты и легочного ствола, привело бы к быстрому исчезновению давления, появившегося в период систолы. В реальной сосудистой системе энергия систолического прироста АД в значительной своей части кумулируется в форме упругого напряжения растягиваемых эластических стенок артериальных камер. Чем выше периферическое сопротивление кровотоку, тем дольше эти упругие силы обеспечивают объемное сжатие крови в артериальных камерах, поддерживая К. д., величина которого по мере оттока крови в капилляры и спадения стенок аорты и легочного ствола постепенно снижается к концу диастолы (тем больше, чем длительнее диастола). В норме диастолическое К. д. в артериях большого круга кровообращения составляет 60—90 мм рт. ст. При нормальном или увеличенном сердечном выбросе (минутном объеме кровообращения) учащение сердечных сокращений (короткая диастола) или значительное повышение периферического сопротивления кровотоку обусловливает повышение диастолического АД, поскольку равенство оттока крови из артерий и поступления в них крови из сердца достигается при большем растяжении и, следовательно, большем упругом напряжении стенок артериальных камер в конце диастолы. Если эластичность артериальных стволов и крупных артерий утрачивается (например, приАтеросклерозе), то диастолическое АД снижается, т.к. часть энергии сердечного выброса, кумулируемая в норме растянутыми стенками артериальных камер, расходуется на дополнительный прирост систолического АД (с повышением пульсового) и ускорение кровотока в артериях в период изгнания.
Среднее гемодинамическое, или среднее, К. д. представляет собой среднюю величину от всех его переменных значений за сердечный цикл, определяемую как отношение площади под кривой изменений давления к длительности цикла. В артериях конечностей среднее К. д. может быть достаточно точно определено с помощью тахоосциллографии, В норме оно составляет 85—100 мм рт. ст., приближаясь к величине диастолического АД тем больше, чем длительнее диастола. Среднее АД не имеет пульсовых колебаний и может изменяться лишь в интервале нескольких сердечных циклов, являясь поэтому наиболее стабильным показателем энергии крови, значения которого определяются практически только величинами минутною объема кровоснабжения и общего периферического сопротивления кровотоку. В артериолах, оказывающих наибольшее сопротивление кровотоку, на его преодоление расходуется значительная часть общей энергии артериальной крови; пульсовые колебания К. д. в них сглаживаются, среднее К. д. по сравнению с внутриаортальным снижается примерно в 2 раза. Капиллярное давление зависит от давления в артериолах. Стенки капилляров не обладают тонусом; общий просвет капиллярного русла определяется числом открытых капилляров, что зависит от функции прекапиллярных сфинктеров и величины К. д. в прекапиллярах. Капилляры открываются и остаются открытыми только при положительном трансмуральном давлении — разнице между К. д. внутри капилляра и тканевым давлением, сжимающим капилляр извне. Зависимость числа открытых капилляров от К. д. в прекапиллярах обеспечивает своеобразную саморегуляцию постоянства капиллярного К. д. Чем выше К. д. в прекапиллярах, тем многочисленнее открытые капилляры, больше их просвет и вместимость, а следовательно, и в большей степени падает К. д. на артериальном отрезке капиллярного русла. Благодаря этому механизму среднее К. д. в капиллярах отличается относительной стабильностью; на артериальных отрезках капилляров большого круга кровообращения оно составляет 30—50 мм рт. ст., а на венозных отрезках в связи с расходом энергии на преодоление сопротивления по длине капилляра и фильтрацию оно снижается до 25—15 мм рт. ст. Существенное влияние на капиллярное К. д. и его динамику на протяжении капилляра оказывает величина венозного давления.
Венозное давление на посткапиллярном отрезке мало отличается от К. д. в венозной части капилляров, но значительно падает на протяжении венозного русла, достигая в центральных венах величины, близкой к давлению в предсердии. В периферических венах, расположенных на уровне правого предсердия. К. д. в норме редко превышает 120 мм вод. ст., что соизмеримо с величиной давления кровяного столба в венах нижних конечностей при вертикальном положении тела. Участие гравитационного фактора в формировании венозного давления наименьшее при горизонтальном положении тела. В этих условиях К. д. в периферических венах формируется в основном за счет энергии притока в них крови из капилляров и зависит от сопротивления оттоку крови из вен (в норме преимущественно от внутригрудного и внутрипредсердного давления) и в меньшей степени — от тонуса вен, определяющего их вместимость для крови при данном давлении и соответственно скорость венозного возврата крови к сердцу. Патологический рост венозного К. д. в большинстве случаев обусловлен нарушением оттока из них крови. Относительно тонкая стенка и большая поверхность вен создают предпосылки для выраженного влияния на венозное К. д. изменений внешнего давления, связанных с сокращением скелетных мышц, а также атмосферного (в кожных венах), внутригрудного (особенно в центральных венах) и внутрибрюшного (в системе воротной вены) давления. Во всех венах К. д. колеблется в зависимости от фаз дыхательного цикла, понижаясь в большинстве из них на вдохе и возрастая на выдохе. У больных с бронхиальной обструкцией эти колебания обнаруживаются визуально при осмотре шейных вен, резко набухающих в фазе выдоха и полностью спадающихся на вдохе. Пульсовые колебания К. д. в большинстве отделов венозного русла выражены слабо, являясь с основном передаточными от пульсации расположенных рядом с венами артерий (на центральные и близкие к ним вены могут передаваться пульсовые колебания К. д. в правом предсердии, что находит отражение в венном Пульсе). Исключение представляет воротная вена, в которой К. д. может иметь пульсовые колебания, объясняемые возникновением в период систолы сердца так называемого гидравлического затвора для прохождения по ней крови в печень (в связи с систолическим приростом К. д. в бассейне печеночной артерии) и последующим (в период диастолы сердца) изгнанием крови из воротной вены в печень. Значение кровяного давления для жизнедеятельности организма определяется особой ролью механической энергии для функций крови как универсального посредника в обмене веществ и энергии в организме, а также между организмом и средой обитания. Дискретные порции механической энергии, генерируемой сердцем только в период систолы, преобразованы в кровяном давлении в стабильный, действующий и в период диастолы сердца, источник энергетического снабжения транспортной функции крови, диффузии газов и процессов фильтрации в капиллярном русле, обеспечивающих непрерывность обмена веществ и энергии в организме и взаиморегуляцию функции различных органов и систем гуморальными факторами, переносимыми циркулирующей кровью. Кинетическая энергия составляет лишь малую часть всей энергии, сообщенной крови работой сердца. Основным энергетическим источником движения крови является перепад давления между начальным и конечным отрезками сосудистого русла. В большом круге кровообращения такой перепад, или полный градиент, давления соответствует разнице величин среднего К. д. в аорте и в полых венах, которая в норме практически равна величине среднего АД. Средняя объемная скорость кровотока, выраженная, например, минутным объемом кровообращения, прямо пропорциональна полному градиенту давления, т.е. практически величине среднего АД, и обратно пропорциональна величине общего периферического сопротивления кровотоку. Эта зависимость лежит в основе расчета величины общего периферического сопротивления как отношения среднего АД к минутному объему кровообращения. Другими словами, чем выше среднее АД при неизменном сопротивлении, тем выше и кровоток в сосудах и тем большая масса обменивающихся в тканях веществ (массообмен) транспортируется в единицу времени кровью через капиллярное русло. Однако в физиологических условиях увеличение минутного объема кровообращения, необходимое для интенсификации тканевого дыхания и обмена веществ, например при физической нагрузке, как и его рациональное уменьшение для условий покоя, достигается в основном динамикой периферического сопротивления кровотоку, причем таким образом, чтобы величина среднего АД не подвергалась существенным колебаниям. Относительная стабилизация среднего АД в аортоартериальной камере с помощью специальных механизмов его регуляции создает возможность динамичных вариаций распределения кровотока между органами по их потребностям путем только локальных изменений сопротивления кровотоку. Увеличение или уменьшение массообмена веществ на мембранах капилляров достигается зависимыми от К. д. изменениями объема капиллярного кровотока и площади мембран в основном за счет изменений числа открытых капилляров. При этом благодаря механизму саморегуляции капиллярного К. д. в каждом отдельном капилляре оно поддерживается на уровне, необходимом для оптимального режима массообмена по всей длине капилляра с учетом важности обеспечения строго определенной степени снижения К. д. в направлении к венозному отрезку. В каждой части капилляра массообмен на мембране непосредственно зависит от величины К. д. именно в этой части. Для диффузии газов, например кислорода, значение К. д. определяется тем, что диффузия происходит благодаря разнице парциального давления (напряжения) данного газа по обе стороны мембраны, а оно есть часть общего давления в системе (в крови — часть К. д.), пропорциональная объемной концентрации данного газа. Фильтрация растворов различных веществ через мембрану обеспечивается фильтрационным давлением — разницей между величинами трансмурального давления в капилляре и онкотического давления плазмы крови, составляющего на артериальном отрезке капилляра около 30 мм рт. ст. Поскольку на этом отрезке трансмуральное давление выше онкотического, водные растворы веществ фильтруются через мембрану из плазмы в межклеточное пространство. В связи с фильтрацией воды концентрация белков в плазме капиллярной крови повышается, и онкотическое давление возрастает, достигая в средней части капилляра величины трансмурального давления (фильтрационное давление уменьшается до нуля). На венозном отрезке из-за падения К. д. по длине капилляра трансмуральное давление становится ниже онкотического (фильтрационное давление становится отрицательным), поэтому водные растворы фильтруются из межклеточного пространства в плазму, снижая ее онкотическое давление до исходных значений. Т.о., степень падения К. д. по длине капилляра определяет соотношение площадей фильтрации растворов через мембрану из плазмы в межклеточное пространство и обратно, влияя тем самым на баланс водного обмена между кровью и тканями. В случае патологического повышения венозного К. д. фильтрация жидкости из крови в артериальной части капилляра превышает возврат жидкости в кровь на венозном отрезке, что приводит к задержке жидкости в межклеточном пространстве, развитию отека (Отёки). Особенности структуры капилляров клубочков почек (Почки) обеспечивают высокий уровень К. д. и положительное фильтрационное давление на всем протяжении капиллярных петель клубочка, что способствует большой скорости образования экстракапиллярного ультрафильтрата — первичной мочи. Выраженная зависимость мочеобразовательной функции почек от К. д. в артериолах и капиллярах клубочков объясняет особую физиологическую роль почечных факторов в регуляции величины К. д. в артериях больше о круга кровообращения. Три основных фактора определяют уровень артериального давления в организме: фактор сердца (частота и сила сокращений), фактор сосудов (просвет сосудов), фактор крови (объем циркулирующей крови, ее реологические свойства. Значение каждого из указанных факторов мы рассматривали на лекциях, посвященных кровообращению. Следует добавить, что при недостаточности одного из факторов его утраченные функции выполняют те, что остались неповрежденными. Например, при уменьшении сосудистого тонуса, необходимый уровень артериального давления может обеспечиваться повышением частоты сердечных сокращений, и увеличению ударного объема. Кроме внутренних, организменных механизмов регуляции уровня артериального давления необходимо отметить и значение поведенческих механизмов. Например, повышение двигательной активности сопровождается повышением уровня артериального давления, а снижение двигательной активности приводит к снижению артериального давления.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|