Режимы движения жидкости. Число Рейнольдса.
Турбулентным называют режим, при котором наблюдается беспорядочное движение, когда частицы жидкости движутся по сложным траекториям и слои жидкости постоянно перемешиваются друг с другом (рис. 2.13, б).
Достаточно полные лабораторные исследования режимов движения и вопрос их влияния на характер зависимости потерь напора от скорости впервые исследовал английский физик Рейнольдс. Установка Рейнольдса для исследования режимов движения жидкости пред ста влена на рис. 2.14. Сосуд А заполняется испытуемой жидкостью. К сосуду А в нижней его части присоединена стеклянная трубка 1 с краном 2, которым регулируется скорость течения в трубке. Над сосудом А расположен сосуд Б сраствором краски. От сосуда Б отходит трубка 3 скраном 4. Конец трубки 3 заведен в стеклянную трубку 1. Для пополнения сосуда А служив трубка 5 с запорным устройством 6. При ламинарном режиме движения жидкости по трубке 1 струйка раствора краски, истекающей из трубки 3, имеет вид четко вытянутой нити вдоль трубки 1. По мере открытия крана 2 увеличивается скорость движения и режим движения переходит в турбулентный, при этом струйка приобретает волнообразный характер, а при еще большей скорости совсем размывается и смешивается с жидкостью в трубке. При постепенном закрытии крана эти явления протекают в обратном порядке, т. е. турбулентный режим сменяется ламинарным.
Опыты показали, что переход от турбулентного режима к ламинарному происходит при определенной скорости (эта скорость называется критической),которая различна для разных жидкостей и диаметров труб; при этом критическая скорость растет с увеличением вязкости жидкости и с уменьшением диаметра труб. Рейнольдсом и рядом других ученых опытным путем было установлено, что признаком режима движения является некоторое безразмерное число, учитывающее основные характеристики потока , где – скорость, м/сек; R - гидравлический радиус, м; v - кинематический коэффициент вязкости, м2/сек. Это отношение называется числом Рейнолъдса. Значение числа Re, при котором турбулентный режим переходит в ламинарный, называют критическим числом Рейнолъдса ReKp. Если фактическое значение числа Re,, будет больше критического Re > ReKp – режим движения турбулентный, когда Re < ReKp – режим ламинарный. Для напорного движения в цилиндрических трубах удобнее число Рейнольдса определять по отношению к диаметру d, т. е. , где d – диаметр трубы. В этом случае ReKp получается равным ~2300. Если число Рейнольдса находится в области , то режим считается переходным, а при - турбулентным. Ламинарный режим возникает в тонких капиллярных трубках, во время движения очень вязких жидкостей, при фильтрации воды в слоях грунта и др. Движение маловязких жидкостей (вода, бензин, спирт) почти всегда происходит в турбулентном режиме. Если в формуле для трубопроводов круглого сечения d выразить через гидравлический радиус ,то получим ReKp= 575. Для других трубопроводов и каналов некруглых сечений можно принимать значение критического числа Рейнольдса ReKp =300 (при вычислении Re через гидравлический радиус).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|