Пример построения модели ТЗ
Пусть необходимо организовать оптимальные по транспортным расходам перевозки муки с двух складов в три хлебопекарни. Ежемесячные запасы муки на складах равны 79,515 и 101,925 т, а ежемесячные потребности хлебопекарен составляют 68,5, 29,5 и 117,4 т соответственно. Мука на складах хранится и транспортируется в мешках по 45 кг. Транспортные расходы (руб./т) по доставке муки представлены в табл.4.2. Между первым складом и второй хлебопекарней заключен договор о гарантированной поставке 4,5 т муки ежемесячно. В связи с ремонтными работами временно невозможна перевозка из второго склада в третью хлебопекарню. Таблица 4.2 Транспортные расходы по доставке муки (руб./т)
ТЗ представляет собой задачу ЛП, которую можно решать симплекс-методом, что и происходит при решении таких задач в Excel. В то же время существует более эффективный вычислительный метод – метод потенциалов, в случае применения которого используется специфическая структура условий ТЗ (4.1) и, по существу, воспроизводятся шаги симплекс-алгоритма. Исходя из этого, в лабораторной работе необходимо построить модель задачи вида (4.1), пригодную для ее решения методом потенциалов. Определение переменных
Обозначим через [меш.] количество мешков с мукой, которые будут перевезены с i-го склада в j-ю хлебопекарню.
2)Проверка сбалансированности задачи
Прежде чем проверять сбалансированность задачи, надо исключить объем гарантированной поставки из дальнейшего рассмотрения. Для этого вычтем 4,5 т из следующих величин: · из запаса первого склада ; · из потребности в муке второй хлебопекарни
Согласно условию задачи мука хранится и перевозится в мешках по 45 кг, то есть единицами измерения переменных являются мешки муки. Но запасы муки на складах и потребности в ней магазинов заданы в тоннах. Поэтому для проверки баланса и дальнейшего решения задачи приведем эти величины к одной единице измерения – мешкам. Например, запас муки на первом складе равен 75,015 т/мес., или , а потребность первой хлебопекарни составляет 68 т/мес., или Округление при расчете потребностей надо проводить в большую сторону, иначе потребность в муке не будет удовлетворена полностью. Для данной ТЗ имеет место соотношение . Ежемесячный суммарный запас муки на складах меньше суммарной потребности хлебопекарен на 4677-3932=745 мешков муки, откуда следует вывод: ТЗ не сбалансирована.
3)Построение сбалансированной транспортной матрицы
Сбалансированная транспортная матрица представлена в таблице 4.3. Стоимость перевозки муки должна быть отнесена к единице продукции, то есть к 1 мешку муки. Так, например, тариф перевозки из первого склада в третий магазин равен Для установления баланса необходим дополнительный фиктивный склад, то есть дополнительная строка в транспортной таблице задачи. Фиктивные тарифы перевозки зададим таким образом, чтобы они были дороже реальных тарифов, например, 50,00 руб./меш. Невозможность доставки грузов со второго склада в третью хлебопекарню задается в модели с помощью запрещающего тарифа, который должен превышать величину фиктивного тарифа, например, руб./меш. Таблица 4.3 Транспортная матрица задачи
Задание ЦФ Формальная ЦФ, то есть суммарные затраты на все возможные перевозки муки, учитываемые в модели, задается следующим выражением:
При этом следует учитывать, что вследствие использования фиктивных тарифов реальная ЦФ (то есть средства, которые в действительности придется заплатить за транспортировку муки) будет меньше формальной ЦФ (4.5) на стоимость найденных в процессе решения фиктивных перевозок.
5)Задание ограничений
(меш./мес.) ВАРИАНТЫ
Постановка задачи На складах хранится мука, которую необходимо завезти в хлебопекарни. Номера складов и номера хлебопекарен выбираются в соответствии с вариантами табл.4.4. Текущие тарифы перевозки муки [руб./т], ежемесячные запасы муки [т/мес.] на складах и потребности хлебопекарен в муке [т/мес.] указаны в табл.4.5. При этом необходимо учитывать, что из-за ремонтных работ временно нет возможности перевозить муку с некоторых складов в некоторые хлебопекарни. В табл.4.4 это показано в графе "Запрет перевозки" в формате № склада x № хлебопекарни. Например, «2x3» обозначает, что нельзя перевозить муку со склада №2 в хлебопекарню №3. Кроме того, необходимо учесть, что некоторые хлебопекарни имеют договоры на гарантированную поставку муки с определенных складов. В табл.4.4 это показано в графе "Гарантированная поставка" в формате № склада x № хлебопекарни = объем поставки. Например, «1x4=40» обозначает, что между складом №1 и магазином №4 заключен договор на обязательную поставку 40 т муки. Необходимо организовать поставки наилучшим образом, учитывая, что мука хранится и транспортируется в мешках весом по 50 кг. Таблица 4.4
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|