Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Принцип работы и области применения источников ионов с электронным ударом и термической ионизацией.




 

Электронная ионизация (ЭИ, ионизация электронным ударом, EI — Electron Ionization or Electron Impact) — наиболее распространённый в масс-спектрометрии метод ионизации веществ в газовой фазе.

При электронной ионизации молекулы анализируемого вещества попадают в поток электронов движущихся от эмиттирующего их катода к аноду. Энергия движущихся электронов обычно 70 эВ, что согласно формуле де Бройля соответствует длине стандартной химической связи в органических молекулах (около 0,14 нм). Электроны вызывают ионизацию анализируемых молекул с образованием катион-радикалов:

M + e = M.+ + 2e

Электронная ионизация происходит в вакууме (сравн. с химической ионизацией), чтобы предотвратить массовое образование ионов атмосферных газов, которые могут рекомбинировать с ионами анализируемого вещества и разрушать их.

Так как энергия электронов значительно превышает энергию химической связи, происходит фрагментация ионов. Химия фрагментации ионов при электронной фрагментации хорошо изучена, поэтому, зная массы фрагментов и их интенсивности можно предсказать первоначальную структуру вещества. Масс-спектры, полученные с помощью метода электронной ионизации хорошо воспроизводимы, поэтому на сегодняшний день существуют библиотеки, содержащие сотни тысяч спектров различных веществ, значительно облегчающие качественный анализ.

Некоторые вещества подвергаются очень интенсивной фрагментации, порождая только низкомолекулярные фрагменты, затрудняющие идентификацию. Для анализа таких веществ существует альтернативный метод химической ионизации

 

Принцип работы и области применения источников ионов с ионным ударом и индуктивно-связанной плазмой.

Ионный удар хз, предположительно SIMS который. ( Масс-спектрометрия вторичных ионов (Secondary-Ion Mass Spectrometry, SIMS) — метод получения ионов из низколетучих, полярных и термически нестойких соединений в масс-спектрометрии.

Первоначально применялся для определения элементного состава низко-летучих веществ, однако впоследствии стал использоваться как десорбционный метод мягкой ионизации органических веществ. Используется для анализа состава твёрдых поверхностей и тонких плёнок. МСВИ — самая чувствительная из техник анализа поверхностей, способная обнаружить присутствие элемента в диапазоне 1 часть на миллиард.

Сущность метода

Проба облучается сфокусированным пучком первичных ионов (например Xe+, Cs+, Ga+) с энергией от 100 эВ до нескольких кэВ (большая энергия используется в методе FAB). Образующийся в результате пучок вторичных ионов анализируется с помощью масс-анализатора для определения элементного, изотопного или молекулярного состава поверхности.

Выход вторичных ионов составляет 0,1-0,01 %.)

Масс-спектрометрия с индуктивно-связанной плазмой (ИСП-МС) — это разновидность масс-спектрометрии, отличающаяся высокой чувствительностью и способностью определять ряд металлов и нескольких неметаллов в концентрациях до 10−10%, т.e. одну частицу из 1012. Метод основан на использовании индуктивно-связанной плазмы в качестве источника ионов и масс-спектрометра для их разделения и детектирования. ИСП-МС также позволяет проводить изотопный анализ выбранного иона.

Индуктивно-связанная плазма (ИСП): Плазма — это газ, содержащий существенные концентрации ионов и электронов, что делает его электропроводным. Плазма, используемая в электрохимическом анализе, практически электронейтральна из-за того, что положительный ионный заряд компенсируется отрицательным зарядом свободных электронов. В такой плазме положительно заряженные ионы преимущественно однозарядны, а число отрицательно заряженных очень невелико, и таким образом, в любом объёме плазмы число ионов и электронов примерно одинаково.

В спектрометрии ИСП поддерживается в горелке, состоящей из трех концентрических трубок, обычно изготовленных из кварца. Конец горелки расположен внутри катушки индуктивности, через которую протекает радиочастотный электрический ток. Между двумя внешними трубами продувается поток аргона (обычно 14-18 л/мин). Для появления в потоке газа свободных электронов на короткое время пропускается электрическая искра. Эти электроны взаимодействуют с радиочастотным магнитным полем катушки, ускоряясь то в одном, то в другом направлении, зависящем от направления поля (обычно 27.12 млн циклов в секунду). Ускоренные электроны сталкиваются с атомами аргона, и иногда эти столкновения приводят к потере aргоном одного из своих электронов. Образовавшийся электрон также ускоряется в быстро меняющемся магнитном поле. Процесс продолжается до тех пор, пока число вновь образовавшихся электронов не компенсируется рекомбинацией электронов с ионами аргона (атомами, от которых уже оторвался электрон). В результате образуется среда, преимущественно состоящая из атомов аргона с довольно небольшим содержанием свободных электронов и ионов аргона. Температура плазмы довольно велика и достигает 10000 K.

ИСП может удерживаться внутри горелки, поскольку поток газа между двумя внешними трубками удерживает её в стороне от стенок горелки. Второй поток аргона (около 1 л/мин) обычно пропускается между центральной и средней трубами, что удерживает плазму в стороне от конца центральной трубы. Третий поток газа (опять же около 1 л/мин) пропускается внутри центральной трубы. Этот поток газа проходит сквозь плазму, где формирует канал более холодный, чем окружающая плазма, но все ещё существенно горячее, чем химическое пламя. Анализируемый образец помещается в центральный канал, обычно в виде аэрозоля, полученного при пропускании жидкости через распылитель.

Поскольку частицы распыленного образца попадают в центральный канал ИСП, они испаряются, как и частицы, прежде растворенные в нём, и распадаются на атомы. При этой температуре значительное количество атомов многих химических элементов ионизуется, при этом атомы теряют наименее связанный электрон, переходя в состояние однозарядного иона.

Ввод пробы

Основной областью применения ИСП-МС является анализ жидких образцов. Существует множество способов введения раствора в ИСП, но все они в основном достигают единого результата — они образуют ультрадисперсный аэрозоль, который может быть эффективно ионизован в плазменном разряде. Только 1-2 % процента пробы достигают плазмы.

Механизм введения жидкости в плазму можно разделить на два независимых процесса: формирование аэрозоля распылителем и селекция капель спрей-камерой.

Интерфейс

Задача интерфейса — транспортировать ионы наиболее эффективно и целостно от плазмы, которая находится при атмосферном давлении (760 Торр), к масс-спектрометру, который работает при примерно 10−6 Торр.

Интерфейс состоит из двух металлических конусов: семплера (с диаметром отверстия примерно 0,8-1,2 мм) и скиммера (обычно диаметр скиммера 0,4-0,9 мм). После того, как ионы сформировались в плазме, они проходят сквозь первый конус, попадая в область низкого давления (примерно 2-3 Торр. Для создания такого вакуума достаточно простого механического насоса). На небольшом расстоянии после семплера находится гораздо более «острый» скиммер, который как бы срезает лишний поток.

Оба конуса обычно делаются из никеля, но иногда и из других металлов, например платины, которая гораздо более стойкая к коррозии, чем никель. Чтобы уменьшить влияние высокой температуры от плазмы, оболочка интерфейса охлаждается водой, причем она сделана из материала, быстро распределяющего тепло, как например медь или алюминий.

Ионы, прошедшие скиммер, направляются ионной оптикой непосредственно к масс-спектрометру.

Разделение ионов

Разделение ионов осуществляется масс-анализатором. Обычно для этой цели используют квадрупольный масс-спектрометр.

Детектор

Масс-спектрометр: Ионы из плазмы через серию конусов попадают в масс-спектрометр, обычно квадрупольный. Ионы разделяются на основании отношения массы к заряду, и детектор получает сигнал, пропорциональный концентрации частиц с таким соотношением.

Концентрация может быть определена путём градуировки с использованием элементных стандартов. ИСП-МС также позволяет количественно определять изотопный состав.

Другие масс-анализаторы, подключаемые к ИСП, включают магнитно-электростатический сектор с двойной фокусировкой, а также времяпролётные системы.

 

Использование

ИСП-МС можно использовать для анализа объектов окружающей среды, таких, как вода и многие другие. Метод может также обнаруживать металлы в моче для определения присутствия токсичных металлов. Прибор очень чувствителен к примесям в воздухе, и высокие концентрации органики приводят к снижению качества работы и необходимости очистки.

ИСП-МС широко применяется в геохимии для определения возраста объекта или его происхождения методом изотопного анализа и по наличию микроэлементов.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...