Главная | Обратная связь
МегаЛекции

Текущая и будущая стоимость денег





Начисление процентов. Расчет наращенной стоимости

В условиях рыночной экономики любое взаимодействие лиц, фирм и предприятий с целью получения прибыли называется сделкой. При кредитных сделках прибыль представляет собой величину дохода от предоставления денежных средств в долг, что на практике реализуется за счет начисления процентов (процентной ставки – i). Проценты зависят от величины предоставляемой суммы, срока ссуды, условий начисления и т. д.

Важнейшее место в финансовых сделках занимает фактор времени (t). С временным фактором связан принцип неравноценности и неэквивалентности вложений. Для того чтобы определить изменения, происходящие с исходной суммой денежных средств (P), необходимо рассчитать величину дохода от предоставления денег в ссуду, вложения их в виде вклада (депозита), инвестированием их в ценные бумаги и т. д.

Процесс увеличения суммы денег в связи с начислением процентов (i) называют наращением, или ростом первоначальной суммы (P). Таким образом, изменение первоначальной стоимости под влиянием двух факторов: процентной ставки и времени называется наращенной стоимостью (S).

Наращенная стоимость может определяться по схеме простых и сложных процентов. Простые проценты используются в случае, когда наращенная сумма определяется по отношению к неизменной базе, то есть начисленные проценты погашаются (выплачиваются) сразу после начисления (таким образом, первоначальная сумма не меняется); в случае, когда исходная сумма (первоначальная) меняется во временном интервале, имеют дело со сложными процентами.

При начислении простых процентов наращенная сумма определяется по формуле

 

S = P (1 + i t), (1)

где S – наращенная сумма (стоимость), руб.; P – первоначальная сумма (стоимость), руб.; i – процентная ставка, выраженная в коэффициенте; t – период начисления процентов.

Текущая и будущая стоимость денег

Текущая стоимость денег - PV (сокращение от «present value») - сумма, которой владелец обладает сегодня.



Будущая стоимость денег - FV - («future value») - это сумма, которую владелец получит спустя некоторое определенное время.

Взаимосвязь будущей и текущей стоимости денег определяется следующим соотношением:

=PV∙ (1+i)

Где i- процентная ставка Банка.

Существует два способа начисления процентов: по простой процентной ставке и по сложной процентной ставке.

При начислении дохода по простой процентной ставке inp доход каждый раз начисляется на первоначально вложенную сумму (через год доход составит inp∙ PV; через два года 2∙ inp∙ PV; через 5 лет - 5∙ inp∙ PV; через n лет - n∙ inp∙ PV). Таким образом, при начислении дохода по простой процентной ставке через n лет на счете у владельца будет сумма:

=PV∙ (1+inp∙n) (2)

Соотношение (2) описывает линейную зависимость будущей стоимости денег FV от времени n.

Вывод. Таким образом, при начислении дохода по простой процентной ставке сумма денежных средств на счете растет по линейному принципу.

При начислении дохода по сложной процентной ставке iдоход начисляется не на первоначальную, а на накопленную сумму. Промежуточные доходы в этом случае инвестируются, или, как говорят в таких случаях, происходит начисление процента на процент.

Если в конце первого года сумма на счете составляла PV (1+i), то в конце второго года она составит PV ∙ (1+i)2, в конце третьего - PV ∙ (1+i)3 и т.д. По прошествии n лет сумма на счете владельца составит:

=PV (1+i)n

Коэффициент

(1+i)n

входящий в правую сторону соотношения (3), называется коэффициентом наращения.

Перейдем теперь к определению таких понятий как эффективная и номинальная процентные ставки.

В действительности проценты могут начисляться несколько раз в году, например, ежеквартально (четыре раза в году), ежемесячно (12 раз), ежедневно (365 раз в году) и т.д. В этом случае мы имеем дело со сложной номинальной процентной ставкой j. Если указывается номинальная процентная ставка j, то всегда ещё указывается, сколько раз в году начисляются проценты.

Рассмотрим пример, когда проценты начисляются ежемесячно. Тогда через месяц на счете у владельца будет сумма:

В течение следующего месяца проценты начисляются на эту сумму, поэтому в конце второго месяца сумма на счете составит:

Через три месяца:

 

 

и т.д. Таким образом, через год сумма на счете составит:

 

Последнее соотношение можно записать, используя эффективную процентную ставку i:

FV=(1+i)

Приравнивая (7) и (8), получим связь между эффективной и номинальной процентными ставками (при начислении процентов 12 раз в году)

Если номинальная ставка j начисляется m раз в году, то в конце первого года сумма на счете составит:

Соотношение устанавливает связь между эффективной и номинальной ставками процента.





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:
©2015- 2019 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.