Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Строение зуба 11 страница




Плацента человека относится ко 2-му типу трофических плацент, которые характеризуются тем, что всосавшиеся в трофобласт ворсинок питательные вещества, тут же в трофобласте расщепляются до простейших соединений (белки до аминокислот, углеводы до моносахоров и т. п. ). После расщепления питательных веществ тут же, в трофобласте, происходит синтез новых веществ, которые не являются антигенами для плода.

Таким образом, 2-й трофический тип плацент характеризуется тем, что в их трофобласте образуются генотипические вещества, не являющиеся антигенами для плода. В то же время в организме плода не могут синтезироваться свои генотипические белки. Поэтому после рождения человеческий детеныш остается длительное время беспомощным и нуждается в тщателном уходе, в получении необходимых для развития организма веществах. Эти вещества младенец получает с молоком матери, и поэтому материнское молоко является незаменимым продуктом для новорожденного и грудного ребенка.

РАЗВИТИЕ И СТРОЕНИЕ ПЛАЦЕНТЫ ЧЕЛОВЕКА

Плацента человека начинает развиваться на 3-й и заканчивается на 6-8 неделе (плацентация). Окончательно плацента формируется на 12 неделе. Плацента состоит из 2-х частей: плодной (pars fetalis) и маточной (pars materna).

Плодная часть плаценты развивается из ветвистого хориона. Ворсины ветвистого хориона погружаются в базальную отпадающую оболочку эндометрия матки (decidua basalis), в результате чего в этой оболочке образуются углубления - лакуны. В лакунах циркулирует материнская кровь. Базальная отпадающая оболочка с лакунами - это маточная часть плаценты.

Строение плодной части плаценты на 12-й неделе. Плодная часть плаценты включает: 1) хориальную пластинку, состоящую из внезародышевой мезодермы (соединительной ткани); 2) амниотическую оболочку, которая срастается с внутренней поверхностью хориальной пластинки; 3) цитотро- и синцитиотрофобласт, покрывающие наружную поверхность хориальной пластинки, обращенной к эндометрию; 4) третичные ворсины, погруженные в лакуны. Третичные ворсины отходят от наружной поверхности хориальной пластинки. От каждой такой ворсины отходят ветви. От основного ствола ворсины отходят вторичные ветви (ворсины), от вторичных - третичные.

Основу ворсин образует соединительная ткань (соединительнотканная строма). Эта строма покрыта цитотрофобластом, лежащим на базальной мембране, и синцитиотрофобластом, расположенным снаружи ворсины. На поверхности синцитиотрофобласта имеются микроворсинки, которые в совокупности образуют всасывающую каемку. Каждая третичная ворсина представляет собой котиледон. Таких котиледонов в плодной части плаценты около 200. В строме ворсины проходят крове­носные сосуды, в которых циркулирует кровь плода.

Среди ворсинок имеются " якорные" ворсины. Эти ворсины характеризуются тем, что они при помощи периферического цитотрофобласта прикрепляются к маточной части плаценты.

В трофобласте ворсин содержится около 60 различных ферментов: СДГ, цитохромоксидаза, ЩФ, кислая фосфатаза, АТФаза, глюкозо-6-дегидрогеназа и др. При помощи этих ферментов питательные вещества, всосавшиеся в трофобласт из крови матери, расщепляются до простейших соединений. Белки распадаются до аминокислот. Из этих аминокислот тут же, в трофобласте, синтезируются специфичные для плода белки. Готовые белки затем поступают в капилляры ворсин, в которых циркулирует кровь плода.

Строение маточной части плаценты. Маточная часть плаценты состоит из базальной пластинки, от которой отходят септы (перегородки), отделяющие лакуны друг от друга. Маточная часть плаценты образовалась из децидуальной ткани - видоизмененной ткани функционального слоя эндометрия (базальной отпадающей оболочки - decidua basalis). В этой ткани содержатся децидуальные клетки, богатые включениями гликогена, липидов, витаминов. Эти клетки дифференцировались из соединительнотканных клеток эндометрия в результате их трансформации. Де­цидуальные клетки имеют овальную форму, овальное или круглое ядро, слабо оксифильную цитоплазму, четкие границы. Эти клетки выполняют трофическую функцию. Те децидуальные клетки, которые образовались из макрофагов, выполняют защитную функцию.

В базальной пластинке (базальной отпадающей оболочке) и септах имеются клетки периферического цитотрофобласта. Эти клетки мигрировали из цитотрофобласта ворсин. При помощи клеток периферического цитотрофобласта " якорные" ворсины прикрепляются к материнской части плаценты. Клетки периферического цитотрофобласта внешне сходны с децидуальными клетками, но отличаются от них выраженной базофилией цитоплазмы.

В лакунах базальной пластинки плаценты циркулирует материнская кровь. Эта кровь поступает через разрушенные ворсинами артерии, омывает ворсины и через зияющие отверстия разрушенных вен возвращается в кровеносную систему матки. Обновление крови в лакунах плаценты осуществляется через каждые 4 минуты.

Периферическая часть базальной отпадающей оболочки прочно срастается с гладким хорионом. В результате этого образуется замыкательная пластинка, которая препятствует излиянию крови из лакун плаценты.

Плацентарный барьер между кровью матери, циркулирующей в лакунах, и кровью плода, циркулирующей в капиллярах ворсин, включает 5 компонентов: 1) трофобласт (цито- и синцитиотрофобласт); 2) базальную мембрану цитотрофобласта; 3) соединительнотканную строму ворсин; 4) базальную мембрану капилляров ворсин; 5) эндотелий капилляров ворсин.

Таким образом, в нормальных условиях кровь плода и кровь матери не смешиваются, они отделены друг от друга плацентарным барьером.

Изменения плодной части плаценты происходят в соединительнотканной строме ворсин и хориальной пластинки и в трофобласте, покрывающем ворсины и хориальную пластинку. Соединительнотканная строма ворсин вначале является довольно плотной, так как в ней содержится значительное количество гиалуроновой кислоты. В этой строме мало фибробластов, макрофагов и еще меньше коллагеновых волокон. В это время (6-8 неделя) вокруг кровеносных сосудов дифференцируются сое­динительнотканные клетки стромы ворсин. Для нормальной функции фибробластов необходимо достаточное количество витаминов С и А. Если этих витаминов будет мало, то нарушится связь плаценты с маткой. Благодаря большому содержанию гиалуроновой кислоты проницаемость стромы ворсин очень низкая. Поэтому низок обмен веществ между кровью матери и кровью плода. На ранней стадии эмбриогенеза эмбрион не нуждается в большом количестве продуктов питания, поэтому нет надобности в высоком обмене веществ.

По мере того как плод растет, ему требуется все больше питательных веществ. В это время повышается активность фермента гиалуронидазы, которая разрушает гиалуроновую кислоту, увеличивается проницаемость соединительнотканной стромы ворсин и улучшается питание зародыша. Процесс распада гиалуроновой кислоты и разрыхления соединительной ткани ворсин продолжается до конца эмбриогенеза, что приводит к последовательному повышению обмена веществ между кровью плода и кровью матери. К концу эмбриогенеза часть фибробластов стромы ворсин дифференцируется в фиброциты, в строме увеличивается содержание коллагеновых волокон.

Изменения трофобласта ворсин и хориальной пластинки характеризуются тем, что на 2-м месяце эмбриогенеза цитотрофобласт истончается, а синцитиотрофобласт утолщается. На 3-м месяце эмбриогенеза истончается и синцитиотрофобласт. Во 2-й половине беременности (эмбриогенеза) синцитиотрофобласт замещается фибрино­идной тканью. Она называется фибриноидом Лангерганса, или Лангганса. Фибриноид Лангерганса образуется за счет компонентов плазмы крови и за счет продуктов распада трофобласта. Фибриноид Лангерганса выполняет такие же функции, как и трофобласт.

Изменения маточной части плаценты заключаются в том, что внутренняя поверхность маточной части плаценты (базальной пластинки и септ) покрывается фибриноидом Рора. Фибриноид Рора принимает участие в обеспечении иммунологического гомеостаза в системе мать-плод.

Функции плаценты: 1) трофическая; 2) дыхательная; 3) выделительная; 4) барьерная; 5) эндокринная; 6) участие в регуляции сокращения миометрия матки.

Трофическая функция заключается в пступлении в организм плода из крови лакун питательных веществ, витаминов, электролитов и других необходимых плоду веществ. Вода и электролиты проникают через плацентарный барьер путем диффузии или с участием пиноцитозных везикул. Иммуноглобулины (Ig) поступают в организм плода при помощи пиноцитозных пузырьков симпластотрофобласта. Через плаценту в околоплодные воды могут поступать иммуноглобулины класса G и А (IgG, IgA).

Дыхательная функция проявляется в обмене кислорода и углекислого газа между кровью плода и кровью матери.

Выделительная функция заключается в выделении продуктов обмена веществ из организма плода в кровь лакун плаценты, которые затем через материнские почки выводятся из её организма.

Барьерная функция обеспечивает задержание поступления болезнетворных микроорганизмов и различных вредных веществ из крови матери в кровь плода. Однако через плацетарный барьер из крови матери в кровь плода проинкают вирус СПИДа, вирус коревой краснухи, бледная спирохета сифилиса, алкоголь, никотин и лекарственные вещества. Если мать больна сифилисом или поражена ВИЧ-инфекцией (вирусом СПИДа), то рожденый от такой матери плод будет болен этими заболеваниями. Если мать во время беременности перенесла коревую краснуху, то рожденный от нее плод будет иметь дефекты физического развития.

Эндокринная функция проявляется в том, что в трофобласте вырабатываются гормоны: плацентарный лактоген, хорионический гонадотропин, прогестерон, эстроген, инсулин и другие гормоны. Плацентарный лактоген стимулирует функцию желтого тела, участвует в регуляции обмена углеводов и белков и в формировании сурфактантного комплекса легких. Хорионический гонадотропин стимулирует синтез АКТГ в гипофизе. Прогестерон подавляет развитие иммунной реакции отторжения плода материнским организмом, стимулирует рост матки. Эстрогены стимулируют рост матки за счет гиперплазии и гипертрофии ее тканевых элементов.

Участие плаценты в регуляции сократимости миометрия матки проявляется в том, что в ней вырабатываются гистаминаза и моноаминоксидаза. Эти ферменты разрушают гистамин, серотонин, тирамин, которые вызывают сокращение мускулатуры матки. К концу беременности выделение гистаминазы и моноаминоксидазы прекращается, поэтому гистамин, серотонин и тирамин не разрушаются и в результате их количество увеличмвается. Под влиянием этих веществ и катехоламинов начинается сокращение миометрия и изгнание плода из матки (начинаются роды).

Пупочный канатик (funiculus umbilicalis) развивается из амниотической ножки, соединяет плод с плацентой. Основой пупочного канатика является слизистая ткань, которая содержит большое количество гиалуроновой кислоты, благодаря чему пупочный канатик обладает высокой упругостью. Поэтому при изгибах или сжатии пупочного канатика, проходящие в нем артерии и вена, не сдавливаются и не нарушается кровоснабжение плода.

В слизистой ткани пупочного канатика имеются фибробластоподобные клетки и макрофаги. По пупочному канатику проходят 3 кровеносных сосуда: пупочная вена и 2 пупочные артерии. По пупочной вене к плоду течет артериальная кровь, по артериям от плода - венозная. Кроме того, в состав пупочного канатика входят остатки желточного мешка и аллантоиса. Стенка желточного мешка выстлана обычно кубическим эпителием, аллантоиса - уплощенным.

Снаружи пупочный канатик покрыт амниотической оболочкой.

СИСТЕМА МАТЬ-ПЛОД

Эта система складывается из подсистемы " мать" и прдсистемы " плод". Связь между этими подсистемами обеспечивается плацентой (связующее звено). В каждой подсистеме имеются рецепторные механизмы, регуляторные и исполнительные (рабочие) органы.

В подсистеме мать имеются термо-, хемо- и барорецепторы, заложенные в стенке матки - это рецепторные механизмы. К регуляторным механизмам относятся высшие нервные центры, заложенные в височной доле, ретикулярной формации среднего мозга и в гипоталамусе; к этим механизмам относится и гипоталамо-эндокринная система, включающая эндокринные органы матери. К этой системе можно отнести и плаценту, в которой вырабатываются лактоплацентарный, гемохориальный и другие гормоны. Гемохориальный гормон стимулирует секрецию АКТГ в гипофизе матери. Под влиянием АКТГ выделяются глюкокортикоиды коры материнских надпочечников.

Благодаря активации функции эндокринных органов, гормональный фон беременной повышен.

К исполнительным механизмам относятся практически все органы материнского организма: сердечно-сосудистая, дыхательная, выделительная, пищеварительная и другие системы.

При раздражении рецепторных окончаний матки импульсы поступают в регуляторные механизмы, а оттуда - в исполнительные органы. В результате этого изменяется частота сердечных сокращений, артериальное давление, глубина и частота дыхания, функциональная активность мочевой системы, обменные процессы. Все эти изменения направлены на поддержание гомеостаза в организме матери и создание оптимальных условий для развития плода.

В подсистеме плод рецепторными механизмами являются рецепторы, заложенные в устье сосудов пупочного канатика, печеночной вене, стенке кишечника и коже. Регуляторные механизмы представлены высшими нервными центрами, которые начинают созревать на 3-м месяце эмбриогенеза. В это время плод начинает двигаться. На 3-м месяце начинает функционировать гипофиз, на 6-м месяце - кора надпочечников, секретирующая кортикостероиды и дегидроапиандростерон, оказывающий влияние на синтез хорионического гонадотропина плацентой. В это же время формируется центр газообмена.

Исполнительные механизмы представлены сердечно-сосудистой и выделительной системами. При раздражении рецепторов плода изменяется его сердцебиение, артериальное давление, выделение мочи в амниотическую полость, обмен веществ, синтез и выделение гормонов (глюкокортикоидов, инсулина и др. ).

Если в организме матери слабо функционирует какой-либо орган, то функция этого органа у плода повышена. Например, если в поджелудочной железе матери вырабатывается мало инсулина, то поджелудочная железа плода вырабатывает его в большом количестве.

Связующее звено (плацента) между двумя подсистемами обеспечивает связь между плодом и матерью 2 путями: 1) через гуморальный канал и 2) при помощи нервной системы (нервный канал). Кроме того, между матерью и плодом существует связь, минуя плаценту, - экстраплацентарный канал.

Гуморальный канал связи плода с матерью наиболее развит - это основной канал, так как между кровью матери и кровью плода постоянно осуществляется обмен веществ.

Нервный канал выражен слабо, так как нервные волокна, идущие от организма матери заканчиваются рецепторами в маточной части плаценты, т. е. они не проникают в организм плода. Точно также нервные волокна, идущие от плода, заканчиваются в устье пупочных сосудов и не переходят в маточную часть плаценты, т. е. непосредственной связи между нервной системой матери и плода нет. Однако, химические, температурные, осматические и т. п. изменеия в плаценте воспринимаются и рецепторами матери, и рецепторами плода. Раздражения, воспринятые рецепторами матери, направляются в центральную нервную систему матери, а раздражения, воспринятые рецепторами плода, - в его центральную нервную стстему. Поступившие в организм матери и плода нервные импульсы, оказывают влияние на функцию органов как материнского, так и плодного организма.

Экстраплацентарная связь может быть нервной и может осуществляться через плодные оболочки и амниотическую жидкость. Нервная связ проявляется в том, что растущее плодное яйцо оказывает давление на рецепторы, заложенные в стенке матки. Поступающие от этих рецепторов в центральную нервную систему матери импульсы, вызывают ответную реакцию и способствуют росту матки в соответствии с увеличением размеров плода.

Экстраплацентарная связь через стенку плодного яйца и амниотическую жидкость заключается в том, что некоторые витамины, иммуноглобулины могут от матери поступать через плодные оболочки в амниотическую полость и далее в организм плода.

Механизмы, препятствующие развитию иммунной реакции (конфликта) между организмом матери и плода. Организм матери и организм плода являются генетически чужеродными, но иммунологического конфликта между ними не возникает. Это обеспечивается 4 факторами: 1) в трофобласте ворсин вырабатываются белки, которые угнетают иммунный ответ матери на антигены плода; 2) хорионический гонадотропин, находящийся в трофобласте ворсин, угнетает (ингибирует) лимфоциты материнской крови (препятствует вступлению их в иммунную реакцию); 3) в фибриониде Лангганса вырабатываются гликопротеиды, котрые имеют отрицательный заряд. Такой же, отрицательный, заряд имеют и лимфоциты крови матери, поэтому материнские лимфоциты не могут приблизиться к трофобласту ворсин плодной части плаценты; 4) белки крови матери, которые для плода являются антигенами, в трофобласте расщепляются до аминокислот, а из этих аминокислот тут же, в трофобласте, синтезируются новые белки (органоспецифические), не являющиеся антигенами по отношению к плоду.

КРИТИЧЕСКИЕ ПЕРИОДЫ

Представление о критических периодах впервые дал австралийский ученый Норман Грег в 1944 году. В 1960 году русский ученый Светлов разработал теорию критических периодов. Согласно Светлову, критический период - это кратковременный период, в течение которого происходит сложная перестройка всего организма или его отдельного органа. Во впемя критического периода происходит пролиферация, детерминация и дифференцировка клеток. При наступлении критического периода организм обладает повышенной чувствительностью к различным вредным воздействиям.

В онтогегезе насчитывается 9 критических периодов, в эмбриогенезе - 5.

1-й критический период - пргенез (развитие половых клеток); 2-й критический период - оплодотворение; 3-й критический период - имплантация (на 7-й день после оплодотворения); 4-й критический период - развитие основных зачатков осевых органов и плацентация (развитие плацеты) начинается на 3-й, а заканчивается на 8-й неделе; 5-й критический период совпадает с интенсивным развитием головного мозга (15-20 неделя), в это время за 1 мин образуется около 20000 нервных клеток; 6-й критический период - половая дифференцировка организма и закладка основных функционирующих систем (20-24 неделя); 7-й - рождение; 8-й - до 1 года жизни ребенка; 9-й критический период - половое созревание.

ДИФФЕРЕНЦИРОВКА ПЛОДА ЧЕЛОВЕКА ПО МУЖСКОМУ ТИПУ

Известно, что при оплодотворении яйцеклетки сперматозоидом, несущим Y- хромосому, зародится эмбрион мужского пола. Это действительно так, но для этого необходимы еще некоторые дополнительные процессы., поскольку природа сделала установку на развитие женского организма. Итак, для развития мужского организма необходимо вносить определенные коррективы. В частности, если на 5-6 неделе эмбриогенеза в развивающихся семенниках не начнет вырабатываться ингибин - гормон регрессии парамезонефральных протоков, то не произойдет обратное развитие парамезонефральных протоков, из которых формируются эпителий яйцеводов, матки и первичная эпителиальная выстилка влагалища. Если на 9-й неделе эмбриогенеза между половыми шнурами не появятся интерстициальные клетки, вырабатывающие тестостерон, то из мезонефрального протока не будут формироваться проток придатка, семявыносящий и семявыбрасывающий протоки. Если во 2-й половине эмбриогенеза не появится новая генерация интерстициальных клеток, вырабатывающих тестостерон, то не начнется половая дифференцировка гипоталамуса по мужскому типу и родится гер­мафродит.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...