Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Краткий исторический обзор





Один из основателей компании Fairchild Semiconductor Роберт Нойс в 1959 году изобрел устройство, которое затем стало называться интегральной схемой, микросхемой или микрочипом.

 

А почти на полгода раньше похожее устройство придумал инженер из компании Texas Instruments Джэк Килби.


Можно сказать, что эти люди стали изобретателями микросхемы.

Интегральной микросхемой называется система из конструктивно связанных элементов, соединенных между собой электрическими проводниками. Также под интегральной схемой понимают кристалл с электронной схемой. Если интегральная схема заключена в корпус, то это уже микросхема.

Первая действующая интегральная микросхема была представлена Килби 12 сентября 1958. В ней использовалась разработанная им концепция, базирующаяся на принципе изоляции компонентов схемы p-n-переходами, изобретенном Куртом Леховеком.

Внешний вид новинки был немного страшноват, но Килби и не предполагал, что показанное им устройство положит начало всем информационным технологиям, иначе, по его словам, он сделал бы этот прототип покрасивее.

Но в тот момент важна была не красота, а практичность. Все элементы электронной схемы – резисторы, транзисторы, конденсаторы и остальные, - были размещены на отдельных платах. Так было до тех пор, пока не возникла мысль сделать всю схему на одном монолитном кристалле полупроводникового материала.

Самая первая интегральная микросхема Килби представляла собой маленькую германиевую полоску 11х1,5 мм с одним транзистором, несколькими резисторами и конденсатором. Несмотря на свою примитивность, эта схема выполнила свою задачу – вывела синусоиду на экран осциллографа.

Шестого февраля 1959 года Джэк Килби подал заявку на регистрацию патента на новое устройство, описанное им как объект из полупроводникового материала с полностью интегрированными компонентами электронной схемы. Его вклад в изобретение микросхемы был отмечен вручением ему в 2000 году Нобелевской премии в области физики.

Идея Роберта Нойса смогла решить несколько практических проблем, не поддавшихся интеллекту Килби. Он предложил использовать для микросхем кремний, а не германий, предложенный Джэком Килби.

Патенты были получены изобретателями в одном и том же 1959 году. Начавшееся между TI и Fairchild Semiconductor соперничество завершилось мирным договором. На взаимовыгодных условиях они создали лицензию на изготовление чипов. Но в качестве материала для микросхем выбрали все же кремний.

Производство интегральных схем было запущено на Fairchild Semiconductor в 1961 году. Они сразу заняли свою нишу в электронной промышленности. Благодаря их применению в создании калькуляторов и компьютеров в качестве отдельных транзисторов, дало возможность сделать вычислительные устройства более компактными, повысив при этом их производительность, значительно упростив ремонт компьютеров.

Можно сказать, что с этого момента началась эпоха миниатюризации, продолжающаяся по сей день. При этом абсолютно точно соблюдается закон, который сформулировал коллега Нойса Гордон Мур. Он предсказал, что число транзисторов в интегральных схемах каждые 2 года будет удваиваться.

Покинув Fairchild Semiconductor в 1968 году, Мур и Нойс создали новую компанию – Intel.

Цифровые микросхемы первоначально разрабатывались для построения электронно-вычислительных машин, получивших в дальнейшем название компьютеры. Первое их предназначение было заменить человека при выполнении рутинной работы.

После начала массового производства цифровых микросхем выяснилось, что они оказались очень удобны для управления различными объектами. При этом управляемая схема может обычно находиться в двух состояниях: либо включена, либо выключена, светодиод может либо гореть, либо не гореть, соединение в телефонной станции может быть или не быть, радиостанция может находиться в режиме передачи или в режиме приёма. В результате цифровые микросхемы практически полностью вытеснили применявшиеся ещё с девятнадцатого века для управления приборами электромагнитные реле и перфокарты.

При выполнении задачи управления для описания состояния объекта достаточно двух значений: напряжение высокое или низкое (положительное или отрицательное), ток протекает или не протекает. Это позволило избавиться от многих неприятных моментов аналоговых схем. Например, ошибка при прохождении через схему не увеличивается (в отличие от шумов), а в ряде случаев даже может быть скомпенсирована. Сами цифровые схемы при правильном использовании не вносят ошибок. Эти свойства цифровых микросхем привели к бурному развитию цифровой техники.

Приведённые преимущества привели к тому, что в дальнейшем цифровая техника стала использоваться и для решения других задач. Например, для формирования высокостабильных колебаний для радиотехнических изделий или для использования в качестве эталонных интервалов времени в часах. Здесь тоже нет необходимости формировать различные уровни напряжения генерируемого сигнала. Достаточно только, чтобы частота генерируемого колебания была стабильной.

Затем стали разрабатываться методы и теория применения цифровых микросхем для формирования аналоговых сигналов. И здесь тоже основным фактором была возможность заранее прогнозировать уровень шумов. При этом уровень шума зависит только от сложности схемы, и не зависит (ну, или почти не зависит) от количества схем, через которые проходит сигнал. Это приводит к возможности передавать сигнал на любое расстояние (или производить любое количество копий сигнала).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...