Класифікація освітлення
При освітленні виробничих приміщень використовують: —природне освітлення, котре створюється прямими сонячними променями та розсіяним світлом небосхилу і яке змінюється залежно від географічної широти, пори року, доби, ступеня хмарності та прозорості атмосфери; —штучне освітлення, створюване електричними джерелами світла; —комбіноване освітлення, за якого недостатнє за нормами природне освітлення доповнюється штучним. Природне освітлення поділяється на бічне (одно- або двобічне), здійснюване через світлові отвори в зовнішніх стінах; верхнє, що здійснюється через аераційні та захисні ліхтарі, отвори в дахах та перекриттях; комбіноване - поєднання верхнього та бічного освітлення. Штучне освітлення за конструктивним виконанням поділяється на два види — загальне та комбіноване. Система загального освітлення використовується в приміщеннях, де по всій площі виконуються однотипні роботи. Розрізняють загальне рівномірне освітлення, світловий потік розподіляється рівномірно по всій площі приміщення без урахування розташування робочих місць. 2. Безпека життєдіяльності у повсякденних умовах виробництва й у побуті і загальне локалізоване освітлення (з урахуванням розташування робочих місць). При виконанні точних зорових робіт (слюсарні, токарні, фрезерні, контрольні тощо) в місцях, де обладнання створює глибокі, різкі тіні або робочі поверхні розташовані вертикально, поряд із загальним освітленням застосовується місцеве освітлення. Сукупність місцевого та загального освітлення називається комбінованим. Застосування лише місцевого освітлення не допускається з огляду на небезпеку виробничого травматизму.
За функціональним призначенням штучне освітлення поділяється на робоче, аварійне і спеціальне, котре в свою чергу класифікується як охоронне, чергове, евакуаційне, бактерицидне, еритемне тощо. Робоче освітлення призначене для забезпечення виробничого процесу, проходу людей, руху транспорту та є обов'язковим для всіх виробничих приміщень. Аварійне освітлення влаштовується для продовження роботи у випадках, коли раптове відключення робочого освітлення порушує нормальне обслуговування обладнання, що може викликати вибух, пожежу, отруєння людей, порушення технологічного процесу тощо. Мінімальна освітленість робочих поверхонь при аварійному освітленні має становити 5% від нормованої освітленості робочого освітлення, але не менше ніж 2 лк. Евакуаційне освітлення призначене для забезпечення евакуації людей з виробничого приміщення при аваріях та вимкненні робочого освітлення і влаштовується в місцях, небезпечних для проходу з виробничих приміщень, в котрих працює понад 50 чол. Мінімальна освітленість на підлозі основних проходів та на сходах при евакуаційному освітленні повинна бути не менше ніж 0,5 лк, а на відкритих майданчиках - не менше ніж 0,2 лк. Охоронне освітлення влаштовується вздовж меж території, котра охороняється спеціальним персоналом. Найменша освітленість У нічний час — 0,5 лк. Сигнальне освітлення застосовується для фіксації меж небезпечних зон, вказує на наявність небезпеки, або безпечний шлях евакуації. До виробничого освітлення можна віднести бактерицидне та еритемне освітлення. Бактерицидне освітлення створюється для знезараження повітря, питної води, продуктів харчування. Найбільшу бактерицидну дію справляють ультрафіолетові промені з Я. І. Бедрій. Безпека життєдіяльності довжиною хвилі 0,254—0,257 мкм. Еритемне опромінювання влаштовується у виробничих приміщеннях, де недостатньо сонячного світла. Максимальний еритемний вплив справляють електромагнітні промені з довжиною хвилі 0,297 мкм.
Природне та штучене освітлення регламентується СНиП II-4-79. Штучне освітлення нормується мінімальною освітлені стю Етіп залежно від характеру зорових робіт, фону, контрасту об'єкта з фоном, типу джерела світла. Гігієна праці вимагає в першу чергу максимального використання природного освітлення, оскільки денне світло краще сприіі мається органами зору. Як критерій оцінки природного освітлення існує відносна величина — коефіцієнт природної освітленості:
2 Безпека життєдіяльності у повсякденних умовах виробництва й у побуті рювання. Лампи розжарювання належать до джерел світла теплового випромінювання. Видиме випромінювання отримується внаслідок нагрівання електричним струмом вольфрамової нитки. У газорозрядних лампах випромінювання оптичного діапазону спектра виникає внаслідок електричного розряду в середовищі інертних газів та парів металу, а також за рахунок явища люмінесценції, котре невидиме ультрафіолетове випромінювання перетворює на видиме світло. При виборі та порівнянні джерел світла користуються такими параметрами: номінальна напруга живлення - U, В; електрична потужність лампи - Р, Вт; світловий потік - Ф, лм; мінімальна сила світла - І, кд; світлова віддача w = Ф/Р, лм/Вт, тобто відношення світлового потоку лампи до її електричної потужності; термін служби та спектральний склад світла.
Лампи розжарювання завдяки зручності експлуатації, простоті конструкції та виготовлення дуже поширені, але мають ряд недоліків: низька світлова віддача (w = 7-20 лм/Вт), відносно малий термін служби (до 2,5 тис. год), у спектрі переважають жовті та червоні промені, що сильно відрізняє їх спектральний склад від сонячного світла. Останнім часом набули поширення галоїдні лампи розжарювання з йодним циклом. Наявність в колбі лампи парів йоду дає змогу підвищити температуру розжарювання нитки, тобто світлову віддачу лампи до 40 лм/Вт. Пари вольфраму, що випаровуються з нитки розжарювання, з'єднуються з йодом і знову осідають на вольфрамовій спіралі, запобігаючи розпиленню вольфрамової нитки та збільшуючи термін служби лампи до 3 тис.год. Спектр випромінювання галоїдної лампи більш близький до природного. Основною перевагою газорозрядних ламп перед лампами розжарювання є велика світлова віддача (до 40-110 лм/Вт). Термін служби — 8— 12 тис. год. Газорозрядні лампи забезпечують світловий потік практично будь-якого спектра шляхом підбирання відповідним чином інертних газів, парів металу, люмінофору. За спектральним складом видного світла розрізняють лампи денного світла (ЛД), денного світла з покращеною передачею кольорів (ЛДЦ), холодного білого (ЛХБ), теплого білого (ЛТБ) та білого (ЛБ) кольорів. Оновним недоліком газорозрядних ламп є пульсація світлового потоку, що може зумовити виникнення стробоскопічного ефекту, котрий полягає у спотворенні зорового сприйняття. До недоліків цих ламп можна віднести також тривалий час розгоран- ЯЛ. Бедрііі. Безпека життєдіяльності ня, необхідність застосування спеціальних пускових пристроїв, що полегшують запалювання ламп; залежність працездатності від температури оточуючого середовища. Газорозрядні лампи можуть створювати радіоперешкоди, запобігання котрим вимагає використання спеціальних пристроїв.
Вибираючи джерела світла, слід керуватися такими рекомендаціями: надавати перевагу газорозрядним лампам як енергетично більш економічним та таким, що мають більший термін експлуатації; для зменшення початкових видатків на освітлювальні установки та витрат на їх експлуатацію слід використовувати лампи найбільшої потужності, але без погіршення якості освітлення. Типи світильників повинні відповідати умовам навколишнього середовища. Для електроосвітлення місць проведення зовнішніх робіт слід застосовувати лампи розжарювання, газорозрядні і ксенонові, а для робіт, котрі виконуються всередині будівлі - світильники з лампами розжарювання. Живлення світильників загального освітлення здійснюється джерелами напруги, що не перевищує 220 В. У приміщеннях без підвищеної небезпеки вказана напруга допускається для всіх стаціонарних світильників незалежно від висоти їх установки. У приміщеннях з підвищеною небезпекою та в особливо небезпечних висота влаштування світильників над підлогою повинна бути не менше ніж 2,5 м; для влаштування на меншій висоті застосовуються світильники, конструкція котрих виключає доступ до лампи без спеціальних пристроїв, або слід встановити світильники з напругою, що не перевищує 12 В. Встановлюючи прилади загального освітлення поза межами приміщення на висоті менше ніж 3 м у приміщеннях з підвищеню небезпекою на висоті менше ніж 2,5 м, їх огороджують від випадкового дотику або застосовують напругу до 42 В. Дозволяється застосовувати переносні електролампи лише заводського виготовлення, оскільки їх конструкція виключає можливість дотику до струмопровідних частин. Лампа повинна бути захищена сіткою, а в особливо небезпечних, запилених та інших приміщеннях — додатково скляним ковпаком. Живлення світильників з лампами напругою 42 В здійснюється тільки від знижувальних трансформаторів. Застосовувати автотрансформатори, дросельні котушки та реостати для зниження напруги забороняється. О 2. Безпека життєдіяльності у повсякденних умовах виробництва іі у побуті 2.2. Іонізуючі випромінювання. Радіаційна безпека 2.2.1. Визначення та дози іонізуючого випромінювання Термін "іонізуюче випромінювання" (IB) об'єднує різні за своєю фізичною природою види випромінювань. Схожість між ними полягає в тому, шо всі вони мають високу енергією, реалізують свою біологічну дію через ефекти іонізації та наступний розвиток хімічних реакцій у біологічних структурах клітини, які можуть призвести до її загибелі [9].
Важливо підкреслити, що IB не сприймається органами відчуттів людини: людина не бачить його, не чує та не відчуває його впливу на тіло. IB існувало на Землі задовго до появи людини, а також було у космосі завжди. Однак його вплив на організм було виявлено лише у кінці минулого століття. У 1895 р. французький вчений Анрі Бекерель поклав кілька фотографічних плівок у шухляду стола, прикрив їх шматками мінералу, який містив уран. Коли він проявив плівки, то побачив на них сліди якихось випромінювань. Цим явищем зацікавилась Марія Кюрі. У 1898 р. вона та її чоловік П'єр Кюрі з'ясували, що випромінювання урану пов'язане з його перетворенням у інші елементи. Вони назвали один із елементів полонієм, другий — радієм (лат. — той, що випромінює). Так з'явилося поняття "радіоактивність". Відкриття Бекереля та дослідження Кюрі були підготовлені працями українського вченого Івана Пулюя, котрий вивчав іонізуючі випромінювання та Вільгельма Рентгена, який у 1895 р. відкрив Х-промені, які були названі рентгенівськими променями, хоча дослідження І.Пулюя були виконані раніше і більш якісно. Бекерель першим пізнав негативні властивості радіоактивного випромінювання. Він поклав пробірку з радієм у кишеню та отримав опік шкіри. Марія Кюрі померла від раку крові внаслідок впливу радіації. В усякому разі 336 чоловік, які в той час працювали з радіоактивними матеріалами, померли внаслідок опромінення. Але остаточно люди пізнали негативні наслідки IB після вибуху атомних бомб в 1945 р. в Японії та після Чорнобильської катастрофи в 1986 р. Я. І. Бедрііі. Безпека життєдіяльності IB називається квантове (електромагнітне) та корпускулярне (яке складається з елементарних часток) випромінювання, під впливом якого в газоподібному, рідкому та твердому середовищі із нейтральних атомів та молекул утворюються іони (позитивні та негативні частки). Класифікація IB наведено на рис. 17. Усі випромінювання за своїм походженням поділяються на квантові (електромагнітні) та корпускулярні. До квантових IB належать ультрафіолетове, рентгенівське та гамма-випромінювання, до корпускулярного - альфа-випромінювання, бета-випромінювання та потоки часток (нейтронів, про тонів та ін.). Рис. 17. Класифікація іонізуючих випромінювань Ультрафіолетове випромінювання — це найбільша короткохвильова частина спектра сонячного світла, генерується атомами чи молекулами внаслідок зміни стану електронів на зовнішніх оболонках. Довжина хвилі — (400—1)х109м. Рентгенівське випромінювання виникає внаслідок зміни стану електронів на внутрішніх оболонках атома, довжина хвилі — (1000—1)х1-12м. Гамма-випромінювання (ГВ) генерується збудженим и ядрами атомів та елементарними частками; довжина хвилі - (ІОО-І)х10- |5м. Це короткохвильове електромагнітне випромінювання, яке займає зону більш високих частот, ніж рентгенів- 2 Безпеко життєдіяльності у повсякденних умовах виробництва и у побуті ське випромінювання. Маючи дуже малу довжину хвилі, воно має яскраво виражені корпускулярні властивості, тобто поводиться, ніби потік часток. Виникає під час ядерних вибухів, розпадах радіоактивних ядер, елементарних часток, а також при проходженні швидких заряджених часток крізь речовину. Завдяки великій енергії (до 5 МеВ) у природних радіоактивних речовинах (до 70 МеВ при штучних ядерних реакціях). ГВ легко іонізує різні речовини та здатне саме викликати деякі ядерні реакції. ГВ може проникати крізь великі товщі речовини. Використовується у медицині (променева терапія), для стерилізації приміщень, апаратури, ліків, продуктів харчування. Альфа-випромінювання (АВ) - це потік позитивно заряджених часток - атомів гелію, які рухаються зі швидкістю близько 20 000 км/с, виникаючи при розпаді радіоактивних ізотопів. Тепер відомо близько 40 природних та понад 200 штучних альфа-активних ядер. Проникаюча здатність АВ мала. Найбільшу небезпеку становить проникнення альфа-ізотопів (наприклад, плу-тоній-239) всередину організму, енергія альфа-часток становить від 2 до 8 МеВ. Бета-випромінювання (БВ) - це потік електронів чи позитронів (бета-часток), які випромінюються атомними ядрами при бета-розпаді радіоактивних ізотопів. їх швидкість близька до швидкості світла. Потоки нейтронів, протонів виникають при ядерних реакціях, їх дія залежить від енергії часток. Звичайно, потоки нейтронів поділяють на повільні (холодні), швидкі та надшвидкі. Джерелами ІВ є ядерні вибухи, енергетичні ядерні установки та інші ядерні реактори, прискорювачі заряджених часток, рентгенівські апарати, радіоактивні ізотопи, уранова промисловість, радіоактивні відходи тощо. Джерелами ІВ є прилади, які працюють з великими напругами споживання: високовольтні випрямляючі діоди (кенотрони), потужні генераторні та модуляторні лампи, потужні НВЧ підсилювачі та генератори-клістрони, ЛБХ, магнетрони та ін. ІВ виникає при розпаді радіоактивних ядер. Кількісною характеристикою джерела випромінювання є активність, яка виражається числом радіоактивних перетворень за одиницю часу. У системі СІ за одиницю активності прийняте одне ядерне перетворення за секунду - бекерель (розп/с). Позасистемною Я.І. Бедрій. Безпека життєдіяльності 2 Безпека життєдіяльності у повсякденних умовах виробництва й у побуті Еквівалентна доза IB визначає біологічний вплив різних видів іонізуючих випромінювань на організм людини та служить для оцінки радіаційної небезпеки цих видів випромінювань. Вона дає змогу приводити біологічний ефект будь-яких IB до впливу, який викликають гамма-промені: Д = К•Дп,де К - коефіцієнт якості випромінювання, який вказує, у скільки разів біологічний ефект даного виду випромінювання відрізняється від такої ж дії гама-випромінювання. К = 1 для рентгенівського випромінювання, 10 - для нейтронів, 20 — для альфа-випромінювання. Еквівалентна доза у системі СІ вимірюється зивертами (Зв). Зиверт дорівнює поглинутій дозі в 1 Дж/кг (для рентгенівського, гамма- та бета-випромінювань). Часто використовують позасистемну одиницю бер (біологчний еквівалент рентгена). 1 бер = 0,01 Дж/кг; 1 бер = 0,01 Зв; 1 Зв = 100 бер. При виключенні проникнення радіоактивного пилу в організм можна вважати, що експозиційна, поглинута та еквівалентна дози практично рівні: 1 бер = 1 рад = 1 Р. Різні частини тіла неоднаково реагують на отриману дозу опромінення. Наприклад, при однаковій еквівалентній дозі виникнення раку в легенях ймовірніше, ніж у щитовидній залозі, опромінення статевих залоз особливо небезпечне через можливі генетичні ушкодження. Тому дози опромінення органів та тканин враховуються за різними коефіцієнтами. При рівномірному опроміненні усього тіла із 100% дози червоний кістковий мозок здатний поглинути 12%, молочні залози-15%, легені — 12%, яєчники чи сім'яники — 25%, щитовидна залоза — 3%, кісткова тканина - 3%, інші тканини - 30%. Дані цифри характеризують коефіцієнти радіаційного ризику цих органів. Сумарний ефект опромінення організму характеризується ефективною еквівалентною дозою, яка отримується шляхом складання Я.І. Бедрій. Безпека життєдіяльності доз, отриманих усіма органами та тканинами, помноженими на коефіцієнт ризику (вимірюється у зивертах). Розглядають також колективну еквівалентну дозу, яка отримана групою людей (вимірюється у людино-зивертах). Колективну ефективну еквівалентну дозу, яку отримують багато поколінь людей від будь-якого радіоактивного джерела (напри к-лад, після Чорнобильської катастрофи) за час існування джерела, називають очікуваною (повною) колективною ефективною еквівалентною дозою. Поглинута та експозиційна дози випромінювання, віднесені до одиниці часу, визначають потужність доз (рівень радіації). Рівень радіації, наприклад, характеризує ступінь забруднення місцевості та зазнає, яку дозу може одержати людина, перебуваючи на забрудненій місцевості, за одиницю часу. Рівень радіації вимірюється у рентген/годинах, рад/годинах, бер/годинах. 2.2.2. Вплив іонізуючого випромінювання на живий організм Усі IB дуже руйнівно впливають на живі організми, проте їхня дія невідчутна людиною. Жодний орган чуттів людини їх не фіксує. Людина може піддаватися опроміненню, поглинути, вдихнути радіоактивну речовину без будь-яких первинних відчуттів. При вивченні дії IB на організм людини виявлено такі особливості: - висока руйнівна ефективність поглинутої енергії IB; навіть малі кількості енергії можуть викликати глибокі біологічні зміни в організмі; - наявність прихованого періоду уявного благополуччя, він може бути достатньо довгим і при опроміненнях у малих дозах; - вплив від малих доз може складатися або накопичуватись; цей ефект називається кумуляцією; - випромінювання впливає не лице на даний живий організм, а й на його нащадків; цей ефект називається генетичним; - різні органи живого організму мають певну чутливість до опромінення. Найчутливіші: червоний кістковий мозок, щитовидна залоза, внутрішні, особливо кровотворні, органи, молочні залози, статеві органи; 2. Безпека життєдіяльності у повсякденних умовах виробництва й у побуті - різні організми мають істотні відмінні особливості реакції — ефект опромінення залежить від частоти впливу IB; одно Внаслідок впливу IB на організм людини в тілі можуть відбуватися хімічні, фізичні та біологічні процеси. 60-70% складу тканин становить вода. Вода (Н20) під впливом випромінювання розщеплюється на водень (Н) та гідроксильну групу ОН, які утворюють продукти з високою хімічною активністю: оксид (Н02) та перекис водню (Н202). Ці сполучення вступають у реакцію з молекулами білка, ферментами та іншими структурними елементами біологічної тканини, руйнуючи її. Внаслідок цього порушуються обмінні процеси, пригнічується активність ферментних систем, уповільнюється та зупиняється ріст тканин, виникають хімічні сполучення, які не властиві організму - токсини, що призводять до порушення життєдіяльності окремих функцій чи систем організму у цілому. Хімічні реакції втягують у цей процес багато сотень та тисяч молекул, на які не діяло опромінення. Це специфічна особливість дії IB. Ніякий інший вид енергії (теплової, електричної), поглиненої організмом у такій самій кількості, не може викликати такі руйнування. Наприклад, смертельна доза ІВ для ссавців - 5 Гр (500 рад), відповідає поглиненій енергії випромінювання 5 Дж/кг (57104 ерг/г). Якщо цю енергію використати у вигляді тепла, то вона зігріла б тіло не більше, ніж на 0,001 °С. Така теплова енергія міститься у склянці чаю. Вплив IB на тканини організму можна описати наступним чином. За час близько десяти трильйонних секунди проникаюче випромінювання внаслідок електричної взаємодії відриває електрон від відповідного атома, утворюються два іони. Гамма-випромінювання з експозиційною дозою 1 рентген здатне утворювати 2,08 млрд іонів в 1 см3 повітря (у воді та живій тканині ефективність гамма-випромінювання - 93%). Електрони, що відірвалися, починають іонізувати інші атоми. І вільні електрони, й іонізовані атоми протягом десяти мільярдних часток секунди беруть участь у складній ланці фізично-хімічних перетворень, внаслідок яких утворються нові молекули, у тому числі й вільні радикали. Я.І. Бедрій. Безпека життєдіяльності Протягом наступних мільйонних часток секунди починаються хімічні зміни в організмі. Вільні радикали, які утворилися, реагують з молекулами організму та змінюють їх хімічну структуру, порушуючи нормальне функціонування клітин. Наступні біохімічні зміни можуть відбутися як через кілька секунд, так і через десятиріччя після опромінення та виявитися причиною загибелі клітин чи змін у них, призводячи до онкологічних захворювань. Повторне опромінення може прискорити чи спровокувати цей процес. Багаторічними дослідженнями, проведеними Міжнародною організацією — Науковим комітететом з впливу атомної радіації, створеною у рамках ООН, встановлені такі граничні значення доз, які викликають різні зміни в організмі. Дуже велика доза (100 Гр) спричинює настільки серйозні ураження, що смерть, як правило, настає протягом кількох годин чи діб. При дозах опромінення від 10 до 50 Гр опромінена людина помре через 1—2 тижні від крововиливу у шлунково-кишковий тракт. При менших дозах смерть може настати через один-два місяці від руйнування клітин червоного кісткового мозку -основного елементу кровотворної системи організму. Від дози опромінення 3-5 Гр вмирає майже половина всіх опромінених (50% — смертельна доза). Кровотворна система організму найуразливіша та припиняє нормальне функціонування при дозах опромінення 0,5—1 Гр. Ці органи, однак, мають високу здатність відновлюватись, і, як що доза не досить велика. кровоносна система може повністю оновити свої функції. Репродуктивні органи та очі мають також високу чутливість до опромінення. Одноразове опромінення сім'яників при дозі лише 0,1 Гр призводить до тимчасової стерильності чоловіків, доза понад 2 Гр може призвести до сталої стерильності (або на роки). Яєчники менш чутливі, але дози понад 3 Гр можуть призвести до безпліддя. Для цих органів сумарна доза, отримана за кілька разів, небезпечніша, ніж одноразова, на відміну від інших органів людини. Очі людини уражаються при дозах 2—5 Гр. Встановлено, що професійне опромінення з сумарною дозою 0,5—2 Гр, отримане протягом 10—20 років, призводить до помутніння кришталика. Особливо уразливі діти. Опромінення у дитячому віці може призвести до аномального розвитку кісток, втрати пам'яті, до бо- 2. Безпеки життєдіяльності у повсякденних умовах виробництва й у побуті жевілля. Дуже чутливий і мозок плоду, якшо майбутня мати підлягає опроміненню (наприклад, при рентгенівському обстеженні), між 8-им та 15-им тижнями вагітності. Більшість тканин дорослої людини мало чутлива до радіації. Нирки витримують сумарну дозу 23 Гр, одержану протягом п'яти тижнів, печінка — 40 Гр за місяць, сечовий міхур — 55 Гр за чотири тижні. Оцінка ймовірності захворювання людей на рак остаточно не встановлена. Існують досить суперечливі данні. Але більшість дослідників вважають, що найменша доза опромінення збільшує ймовірність захворювання на рак та всяка додаткова доза підсилює цю ймовірність. Хоча беззаперечних доказів впливу малих доз поки що не отримано. Небезпека різних радіоактивних елементів для людини визначається властивістю організму поглинати та накопичувати ці елементи. При проникненні радіоактивних речовин (РР) у середину організму уражаються переважно органи та тканини, в яких відкладаються такі ізотопи: йод — у щитовидній жалозі, стронцій — у кістках, уран і плутоній — у нирках, товстому кишечнику, печінці, цезій — у м'язовій тканині, натрій поширюється по всьому організму. Ступінь небезпеки залежить також від шкідливості виведення радіоактивних речовин з організму. З часом відбувається поступовий розпад радіоактивних елементів та виведення їх з організму. Цей процес характеризується такими показниками. Період напіврозпаду - час, за який розпадається половина атомів радіоактивного елемента (Т). Період біологічного на-піввиведення - час, протягом якого кількість даного радіактив-ного елементу зменшується вдвоє внаслідок фізіологічного обміну (Т6). Ефективний період напіввиведення - час, протягом якого кількість даного радіактивного елемента зменшується вдічі за рахунок радіоактивного розпаду та біологічного виведення (Теф). Кількісні значення даних періодів для деяких елементів наведено в табл.4.
Зрозуміло, що найнебезпечнішими для організму є стронцій та плутоній, які можуть накопичуватись протягом усього життя. У наш час розроблені різні методики лікування уражених, але радикальних засобів лікування немає. 2.2.3. Радіоактивне забруднення води та продуктів харчування Радіоактивність та супровідні її іонізуючі випромінювання існували на Землі задовго до зародження на ній життя і були наявні в космосі ще до виникнення самої Землі. Основну частину опромінення населення Землі отримує від природних джерел, бо уникнути опромінення від них неможливо. Існує два шляхи опромінення: зовнішнє та внутрішнє. Внутрішнє опромінення здійснюється через повітря, воду, продукти харчування. Земні джерела радіації відповідальні за більшу частину опромінення, котрому підлягає людина за рахунок природної радіації. В середньому вони становлять понад 5/6 річного ефекту еквівалентної дози, отриманої населенням внаслідок внутрішнього опромінення. Космічні промені досягають поверхні Землі з глибин Всесвіту, а деяка частина з них народжується на Сонці під час сонячних спалахів. Космічнічні промені.можуть досягнути поверхні Землі, або взаємодіяти з її атмосферою, народжуючи вторинне випромінювання і утворюючи різні радіонукліди. В гірських породах землі основні радіоактивні ізотопи - це калій-40, рубідій-87, уран-238, торій-232. Істотний вплив на організм людини справляє використання заражених продовольства та води. 2. Безпека життєдіяльності у повсякденних умовах виробництва іі у побуті Забруднення води відбувається внаслідок проникнення РР у відкриті водоймища. Радіоактивні частки формують суспензії у воді, частина осідає на дно, а частина розчиняється, заражаючи водоймища на всю глибину. Найбільше забруднюються озера, ставки, повільні ріки, дощові та розталі води. Забруднення повноводних рік незначне, тому що у них практично не може бути висока концентрація PP. Продовольство заражається шляхом опромінення безпосередньо IB, аерозольним, контактним та біологічним шляхами. Безпосередній вплив IB на продукти харчування практично повністю робить їх непридатними. Це відбувається внаслідок того, що ізотопи ряду хімічних елементів, які належать до складу продуктів харчування, захопивши нейрон, перетворюються на радіоактивні елементи. У продуктах, які містять натрій, кальцій, магній, фосфор, може виникати значне зараження. До них належать: молочні та рибні продукти, різні соління, бобові, гречана крупа тощо. Аерозольне зараження продовольства - це проникнення радіоактивного пилу у виробничі, складські приміщення та транспорт з наступним осіданням пилу на продуктах. Зараження відбувається з поверхні, але РР проникає у продукти на достатньо велику глибину: в м'ясо — на 1см, зерно, крупи - на 5 см, молоко, кефір, вершки, сметану - на всю глибину; в борошно, сіль. цукор - на 0,5 см; в рибу, овочі.фрукти - на 0,3 см. Крізь скло зараження практично не відбувається, але поліетиленові мішки, кульки не запобігають зараженню. Контактне зараження можливе у випадку перевезення продовольства на забрудненому транспорті, під час переробки на брудному технологічному обладнанні та при пакуванні у забруднену тару. Біологічний шлях зараженнявідбувається під час випадання РР: повітря, ґрунт, рослинність, вода стають забрудненими. РР включаються в процеси біологічної циркуляції й обміну речовин та проникають всередину організму тварин, птахів, риб та рослин (крізь кореневу систему та листя). Активними накопичувачами радіації є капуста, цибуля, цукровий буряк, помідори, ячмінь. Менше — кукурудза, жито, овес, соняшник. Із грибів найбільше накопичують радіацію моховик, маслюк; із тваринного світу -їжак; із птахів - качка; із риб - в'юн, лин, сом. У картоплі РР розташовуються ближче до шкірки. Під час варіння картоплі у Я. І. Бедрій. Безпека життєдіяльності воду переходять 10% цезію, буряка - 60%. Якщо олію прокип'ятити, то зникне 37% йоду, але стронцій та цезій залишаться. Ступінь зараження продуктів (грунту, об'єктів) прийнято оцінювати питомою активністю, тобто відношенням активності наявних РР до одиниці маси (площі, об'єму). Ступінь зараження продуктів вимірюється у Ки/кг чи Ки/л. ступінь зараження грунту — Ки/км2 (10 мкР/год.) В природніх умовах у багатьох продуктах харчування є PP. Наприклад, в 1 кг свіжої картоплі є близько 2,9+ 10-9 Ки/кг радіоактивного калію, природна радіоактивність води становить близько 5+10-11 Ки/л. У 1991 році встановлені тимчасові граничні рівні вмісту радіонуклідів цезію та стронцію у продуктах та питній воді (ВДУ-91), табл.5. Таблиця 5 Граничні рівні вмісту радіонуклідів Великі експериментальні дані щодо забруднення радіонуклідами продуктів харчування були одержані українськими спеціалістами після чорнобильської катастрофи 1986 року. У перші 30-40 діб після аварії критичним продуктом було молоко, яке було заражене радіоактивним цезієм та йодом. Тільки наприкінці 1986 року рівень забруднення молока знизився. У середньому по Україні у 1986 році рівень забруднення молочних продуктів був вишим за доаварійний 1985 рік у 1440 разів. У 1990 році активність цезію у 2. Безпека життєдіяльності у повсякденних умовах виробництва й у побуті молоці перевищувала доаварійний рівень у 33 рази. Підвищення рівня активності РВ у м'ясі встановлене на 14—15 діб пізніше. До кінця 1986 р. вона перевищувало рівень 1985 р. більш як у 1000 разів. У 1990 р. перевищення становило 21,9 раза. Практично на території України були заражені на довгий строк усі продукти. У 1990 році активність РР перевищувала доаварійний (1985 р.) рівень у хлібопродуктах - у 6 разів, у рибі - в 1,4 рази, у картоплі — в 11 разів, в овочах - у 12 разів. 2.2.4. Норми радіаційної безпеки Перші безмежні межі опромінення людей були визначені на початку XX ст. Оскільки у той час променеві ураження стосувалися головним чином шкіри, то було запропоновано прийняти як безпечну десяту частину дози, яка викликає еритему (почервоніння) шкіри через 10 діб. У 1934 р. міжнародна комісія радіаційної охорони встановила толерантну дозу — 0,2 Р/добу. Із надходженням нових даних про віддалені наслідки впливу IB на людину термін "толерантна доза" був замінений висловом "гранично допустима" доза, а її величина встановлена 0,05 Р/добу, або 18 Р/рік. У 1958 p. MKP3 прийняла гіпотезу безмежної лінійної залежності — доза-ефект, згідно з якою будь-які найнезначніші опромінення можуть викликати небажані генетичні наслідки, причому ймовірність таких наслідків прямо пропорційна дозі. Для фахівців, котрі мають справу з IB, доза становить 5 бер/рік. В данний час розробляються рекомендації з прийняття гранично допустимої дози в 1 бер /рік. Нині діють "Норми радіаційної безпеки (НРБ-76/87), прийняті у ] 987 р. При встановленні норм був взятий за основу такий принцип - забезпечити захист від IB окремих осіб, їх нащадків та людство в цілому, а також розробити відповідні умови для необхідної практичної діяльності, під час якої люди можуть потрапити під вплив IB. У НРБ проведено чітке розмежування між лозовими границями для різних категорій опромінюваних осіб. Категорія А — персонал, який працює безпосередньо з IB. Категорія Б - обмежена частина населення (особи, які безпосередньо не працюють з IB, але за умовами проживання чи розташування робочих місць можуть підлягати опроміненню). Я.І. Бедрій. Безпека життєдіяльності Категорія В - населення. Встановлені три категорії органів тіла людини, опромінення яких викликає різні наслідки: I — усе тіло, червоний кістковий мозок; II - м'язи, щитовидна залоза, жирова тканина, внутрішні орга III - кісткова тканина, поверхня шкіри, кістки, передпліччя, Норми радіаційної безпеки наведено в табл. 6 у берах на рік. Таблиця 6 Норми радіаційної безпеки
Закон України 1991 р. "Про правовий режим території, яка зазн&іа радіаційного забруднення внаслідок Чорнобильської катастрофи" визначає рівні забруднення місцевості та вид екологічної зони. Згідно з цим Законом забрудненою вважається територія, проживання на якій може призвести до опромінення населення понад 0,1 бер за рік, що перевищує природний доаварійний фон. Наводено розподіл забрудненої території на зони: - зона відчуження - 30 кілометрова зона, з якої була проведена евакуація населення у 1986 р. (40-80 Ки/км2); - зона безумовного (обов'язкового) відселення - це територія, яка підлягала інтенсивному забрудненню довгоживучими ізотопами цезію від 15,0 Ки/км2; стронцію - від 3,0 Ки/км2; плутонію—від 0,1 Ки/км2, а також територія,де людина може отримати додаткову дозу опромінення понад 0,5 бер за рік; - зона гарантованого добровільного відселення - це територія з щільністю забруднення грунту ізотопами: цезію від 5,0 до 15,0 Ки/км2; стронцію - від 0,15 до 3 Ки/км2; плутонію - від 0,01 до 0,1 Ки/км2, а також територія, де людина може отримати додаткову дозу опромінення вище 0,1 бер /рік; 2. Безпеко життєдіяльності у повсякденних умовах виробництва й у побуті - зона посиленого радіоекологічного контролю — це територія із щільністю зараження грунту ізотопами: цезію — від 1,0 до 5,0 Ки/км2; стронцію - від 0,02 до 5,5 Ки/км2; плутонію -від 0,005 до 0,01 Ки/км2, а також територія, де людина може отримати додаткову дозу опромінення 0,1 бер/рік. Таким чином, іонізуючі випромінювання за своєю природою шкідливі для життя. Будь-яке опромінення збільшує ризик захворювань. Крім того, у людей відсутні органи, які сприймають IB, що робить їх особливо небезпечними. 2.3. Електромагнітні поля та випромінювання 2.3.1. Вплив електромагнітних полів та випромінювань на живі організми Відразу ж після початку практичного використання радіо почали спостерігатися симптоми шкідливого впливу радіохвиль на людей. У моряків, які несли службу на кораблях Балтійського флоту, де випробувались перші потужні радіостанції, помічалися небувала втома, пригнічений настрій, головний біль. Першим фахівцем, який звернув серйозну увагу на вивчення цих фактів, був лікар П.І.Іржевський. У 1900 р. П.І.Іржевський на вченій раді Військово-медичної академії захистив докторську дисертацію на тему "Вплив електричних хвиль на організм людини". Вона спиралася на результати медичних спостережень над особами, які працювали з радіоустановками, а також експериментів з матросам и-добровольцями. Отримані дані сприяли формуванню уявлення про заходи безпеки при роботі з радіоапаратурою, а також використовувалися П.І.Іржевським при розробці методів фізіотерапевтичного лікування електромагнітним випромінюванням. Біосфера впродовж усієї еволюції перебувала під впливом електромагнітних полів (ЕМП), так званого фонового випромінювання, викликаного природними причинами. У процесі індустріалізації людство додало до цього цілий ряд чинників, посиливши фонове випромінювання. В зв'язку з цим ЕМП антропогенного походження почали значно перевищувати природний фон і дотепер перетворились на небезпечний екологічний чинник. Класифікація ЕМП наведено на рис. 18.
Рис. 18. Класифікація ЕМПта випромінювань Усі ЕМП та випромінювання поділяють на природні та антропогенні. ЕМП природного походження. Навколо Землі існує електричне поле напругою у середньому 130 В/м, яке зменшується від середніх широт до полюсів та до екватора, а також за експоненціальним законом з віддаленням від земної поверхні. Спостерігаються річні, добові та інші варіації цього поля, а також випадкові його зміни під впливом грозових розрядів, опадів, завирюх, пло-вих бурь, вітрів. Наша планета також має магнітне поле з напругою 47,3 А/м -на північному, 39,8 А/м - на південному полюсах, 19,9 А/м — на магнітному екваторі. Це магнітне поле коливається з 80-річним та 11-річним циклами змін, а також з більш короткочасними змінами з різних причин, пов'язаних із сонячною активністю (магнітні бурі). 2. Безпека життєдіяльності у повсякденних умовах виробництва іі у побуті Земля постійно перебуває під впливом ЕМП, яке випромінює Сонце, у діапазоні в основному 10 мГц— 10гГц. Спектр сонячного випромінювання досягає і більш короткохвильвої області, яка містить інфрачервоне (14), видиме, ультрафіолетове (Уф), рентгенівське та гамма-випромінювання. Інтенсивність випромінювання змінюється періодично, а також швидко та різко збільшується при хромосферних спалахах. Розглянуті ЕМП впливали на біологічні об'єкти та, зокрема на людину, під час усього її існування. Це дало змогу у процесі еволюції пристосуватися до впливу таких полів та виробити захисні механізми, які захищають людину від можливих ушкоджень за рахунок природних чинників. Але вчені все-таки спостерігають кореляцію між змінами сонячної активності (що спричинюють зміни електромагнітного випромінювання) і нервовими, психічними, серцево-судинними захворюваннями людей, а також порушенням умовно-рефлекторної діяльності тварин. Антропогенні випромінювання фактично охоплюють усі діапазони. Розглянемо вплив радіохвильового випромінювання, зокрема випромінювання ВЧ та УВЧ-діапазонів (30 кГц-500 мГц). Можливості прямого опромінення радіохвилями визначаються умовами їх поширення, які залежать від довжини хвилі. На довгих хвилях (10-1км) ЕМП створюється хвилею, яка огинає земну поверхню та перешкоди, які на ній розташовані (будинки, рослинність, нерівності місцевості), і йде між земною поверхнею та нижньою межею іонізаційного шару атмосфери. Вони майже не поглинаються грунтом. Сигнали потужних радіомовних станцій в цьому діапазоні фактично у будь-якій час доби вільно поширюються на далекі відстані. Тому станції мають розглядатися як джерела ЕМП, які відіграють важливу роль в екологічному відношенні. Середні хвилі (1000-100 м) також достатньо добре огинають земну поверхню, хоча при цьому відхиляються перешкодами, які мають розмір, більший від довжини хвилі, та значно поглинаються грунтом. В зв'язку з цим віддаль поширення середніх хвиль становить близько 500 км, а для обслуговування великих територій встановлюється межа ретрансляційних станцій. В цьому діапазоні працюють радіостанції на суднах та аеродромна радиослужба. Проте головну екологічну небезпеку створюють потужні радіомовні станції. Я.І. Бедрій. Безпека життєдіяльності У діапазоні коротких хвиль (100-10 м) радіохвилі дуже сильно поглинаються Грунтом, але для поширення на велику відстань використовується їх віддзеркалювання від земної поверхні та від іоносфери. В цьому діапазоні працюють радіомовні станції та станції зв'язку. На ультракоротких хвилях (10-1 м), які дуже поглинаються грунтом та майже не віддзеркалюються іоносферою, поширення сигналів відбувається практично лише в межах прямої видимості. Для збільшення цієї зони використовують високо розміщені антени та ретранслятори, причому ЕМП утворюється внаслідок інтерференції прямого та віддзеркаленого променів. У цьому діапазоні працюють зв'язкові, радіомовні та телевізійні станції, розташовані, як правило, у місцях великої концентрації населення. Систематичні дослідження впливу ЕМП на людей почались приблизно з 50-х р. У діапазонах ВЧ та УВЧ систематично обсте-жуюються перш за все особи, які безпосередньо працюють з радіоапаратурою та перебувають біля передавачів, пультів керування, комутаційних пристроїв, радіо- та телевізійних станцій. Проте хоча реальний час впливу інтенсивного ЕМП на обслуговуючий персонал не завжди дорівнює тривалості зміни, часто значно менший, але і його буває достатньо, щоб викликати серйозне погіршення самопочуття. Під час медичного обстеження виявляються суб'єктивні розлади, які спостерігаються під час роботи: загальна слабкість, підвищена втома, пітливість, сонливість, а також розлад сну, головний біль та у ділянці серця. З'являється роздратування, втрата уваги, зростає тривалість мовнорухової та зоровомоторної реакцій, підвищується межа нюхової чутливості. Виникає ряд симптомів, які є свідченням порушення роботи окремих органів — шлунка, печінки, селезінки, підшлункової та інших залоз. Пригнічуються статеві та харчові рефлекси. Реєструються об'єктивні показники, наприклад, зміна артеріального тиску, частота серцевого ритму форма електрокардіограми. Це свідчить про порушення діяльності серцево-судинної системи. Фіксуються зміни показників білкового та вуглеводного обмінів, збільшується вміст азоту в крові та сечі, знижується концентрація альбуміну та зростає вміст глобуліну, збільшується кількість лейкоцитів, тромбоцитів, виникають й інші зміни складу крові. 2. Безпека життєдіяльності у повсякденних умовах виробництва й у побуті Досліджується також вплив ЕМП на здоров'я населення поблизу території радіостанції. Під час одного з таких досліджень, проведених на території України, опитувалося населення, аналізувались медичні документи лікарень та поліклінік, вивчались деякі показники стану здоров'я у дітей різного вікуу школах та дитячих садках. Були обстежені сотні людей. Отримані результати для осіб, що мешкають біля (на відстані менше ніж кілометр) потужної радіостанції, що працює на середніх та коротких хвилях, порівнювалися з контрольними для аналогічної групи населення, в місцях проживання якої немає джерел випромінювання. Матеріали дослідження показали, що кількість скарг на здоров'я в місцевості поблизу радіостанції значно (майже вдвічі) вища, ніж у контрольній групі. Виявлено багато розладів, які ще не є захворюванням та не викликали звертання до лікарів. Загальна зах-ворюванність в селищі з радіоцентром, в основному, зумовлена порушенням нервової та серцево-судинної системи, також була вищою, ніж у контрольній групі. В обстежених дітей відзначено порушення розумової працездатності внаслідок зниження уваги через розвиток послідовного гальмування та пригнічення нервової системи. Фіксувалися прискорений пульс та дихання, підвищення артеріального тиску при фізичному навантаженні та сповільнене повернення до норми цих показників при його знятті. Фіксувався також вплив ЕМП на інші процеси, в тому числі імунобіологічні. Опубліковано чимало матеріалів з вивчення впливу ЕМП діапазонів УВЧ та ВЧ на тварин (мавп, кролів, пацюків, мишей). Найу-важніше вивчали порушення діяльності серцево-судинної системи. Дослідження показали, що опромінення ЕМП малої інтенсивності впливає на тварин практично так само, як і на людей. Значні зміни функціонування органів та систем спостерігалися не лише під час опромінення, а й щодо їх наслідків протягом тривалого часу. У перший період опромінення спостерігалися зміни пове-денки тварин: у них з'являлися неспокій, збудження, рухова активність, прагнення втекти із зони випромінювання. Тривалий вплив ЕМП призводив до зниження збудження, зростання процесів гальмування. Опромінення ЕМП спричинювало порушення умовних рефлексів та затримку їх вироблення. Я.І. Бедрій. Безпека життєдіяльності Вплив ЕМП на тварин у період вагітності призводив до зростання кількості мертвонароджених, викидів, каліцтв. Спостерігалися аналогічні наслідки, які проявлялися у наступних поколіннях. Мікроскопічні дослідження внутрішніх органів тварин виявили дістрофічні зміни тканин головного мозку, печінки, нирок, легенів, серцевого м'язу з венозним повнокрів'ям, набряками, зміною забарвлення. Було зафіксовано порушення на клітинному рівні. ЕМП повинні розглядатися в основному як хвороботворний чинник. На підставі клінічних та експериментальних матеріалів виявлені основні симптоми ураження, які виникають при впливі ЕМП. їх можна класифікувати як радіохвильову хворобу. Ступінь патології прямо залежить від напруги ЕМП, тривалості впливу, фізичних особливостей, діапазонів частот, умов зовнішнього середовища, а також від функціонального стану організму, його стійкості до впливу різних чинників, можливостей адаптації. Поряд з радіохвильовою хворобою як специфічним результатом дії ЕМП спостерігається, через вплив, загальне зростання захворюваності, а також захворювання на окремі хвороби органів дихання, травлення та ін. Це відмічається також при дуже малій інтенсивності ЕМП, яка незначно перевищує гігієнічні нормативи. Ймовірно, причиною є порушення нервово-психічної діяльності як головної у керуванні всіма функціями організму. Внаслідок дії ЕМП можливі як гострі, так і хронічні ураження, порушення в системах та органах, функціональні зміни в діяльності нервово-психічної, серцево-судинної, ендокринної, кровотворної та інших систем. Звичайно, зміни діяльності нервової та серцево-судинної системи зворотні, і хоча вони мають кумулятивний характер (тобто накопичуються з часом), але, як правило, зменшуються та зникають при виключенні впливу та покращенні умов праці. Але тривалий та інтенсивний вплив ЕМП призводить до стійких порушень і захворювань. Випромінювання НВЧ-діапазону. Активність впливу ЕМП різних діапазонів частот різна: вона значно зростає з ростом частоти та дуже серйозно впливає у НВЧ-діапазоні. У даний діапазон входять дециметрові (100—10см), синтиметрові (10—1см) та міліметрові (10—1мм) хвилі. У зарубіжних літературих джерелах усі ці діапазони об'єднуються терміном "мікрохвльові". 2, Безпека життсдіяяьності у повсякденних умовах виробництва й у побуті Як і УВЧ, НВЧ-випромінювання дуже поглинається ґрунтом та не віддзеркалюється іоносферою. Тому поширення НВЧ відбувається в межах прямої видимості. На деяких ділянках діапазону НВЧ спостерігаються поглинання та розсіювання хвиль молекулами кисню, випаровуванням води, атмосферними опадами, що обмежує віддаль поширення. На дециметрових хвилях працюють радіомовні та телевізійні станції, які забезпечують завдяки зниженню рівня перешкод вищу якість передачі інформації, ніж в УВЧ-діапазоні. Усі ділянки НВЧ-діапазону використовуються для радіозв'язку, в тому числі радіорелейного та супутникового. В цьому діапазоні працюють практично всі радіолокатори. Оскільки випромінювання НВЧ, поглинаючись поганопровід-ним середовищем, викликає їх нагрівання, цей діапазон широко використовується у промислових установках, які базуються на використанні й інших ефектів, пов'язаних з НВЧ-випромінюван-нями. Подібні установки використовуються і в побуті. Вплив НВЧ випромінювання на живі тканини дав підставу для розробки терапевтичної медичної апаратури. Завдяки особливостям поширення НВЧ, саме цей діапазон використовується для передачі енергії променем на великі відстані. В НВЧ-діапазоні вузькоскеровані антени використовуються відносно мало. Здебільшого використовується можливість сфокусувати випромінювання у вузький промінь антенним пристроєм порівняно невеликих габаритів. У межах променів, обмежених діаграмою спрямованності антени, інтенсивність ЕМП суттєво збільшується, а за межами променів стає дуже малою, що зумовлює достатньо чітке розмежування зон різного ступеня небезпеки. Вплив НВЧ на біологічні об'єкти останнім часом привертає Увагу великої кількості дослідників та висвітлюється у численних наукових доповідях та публікаціях. Є відомості про клінічні прояви дії НВЧ залежно від інтенсивності опромінення. При інтенсивності близько 20 мкВт/см2 спостерігається зменшення частоти пульсу, зниження артеріального тиску, тобто реакція на опромінення. Вона сильніша та може навіть виражатися у збільшенні температури тіла осіб, які раніше потрапляли під опромінення. Із зростанням інтенсивності проявляються електрокардіологічні зміні, при хронічному впливі - тенденція до гіпотонії, до змін з боку Я.І. Бедрій. Безпека життєдіяльності нервової системи. Потім починається прискорення пульсу, коливання об'єму крові. За інтенсивності 6 мВт/см2 помічено зміни у статевих залозах, у складі крові, помутніння кришталика. Далі — зміни у згортанні крові, умовно-рефлекторній діяльності, вплив на гепатоцити, зміни у корі головного мозку. Потім — підвищення артеріального тиску, розриви капілярів та крововиливи у легені та печінку. За інтенсивності до 100 мВт/см2 - стійка гіпотонія, стійкі зміни у серцево-судинній системі, двобічна катаракта. Подальше опромінення помітно впливає на тканини, викликає больові відчуття. Якщо інтенсивність перевищує 1 Вт/см2, то це викликає дуже швидку втрату зору. Таким чином, НВЧ-опромінення діє в основному аналогічно хвильовому, але сильніше. Крім того, спостерігаються і деякі особливості. Багато ефектів від дії ЕМП пояснюються перетворенням енергії випромінювання на теплову. Оскільки нагрівання зростає пропорційно частоті, явища, пов'язані із нагріванням, на НВЧ проявляються сильніше. Зупинимося на двох проявах НВЧ-опромінення, які деякою мірою можуть вважатися специфічними, тобто зумовленими цими, а не іншими чинниками впливу. Одним із серйозних ефектів, зумовлених НВЧ-опроміненням, є ушкодження органів зору. На нижчих частотах такі ефекти не спостерігаються і тому їх треба вважати специфічними для НВЧ-діа-пазону. Ступінь ушкодження залежить в основному від інтенсивності та тривалості опромінення. Із зростанням частоти, напруги ЕМП, яка викликає ушкодження зору, - зменшується. Гостре НВЧ-опромінення викликає сльозотечу, подразнення, звуження зіниць. Потім після короткого (1—2 доби), прихованого, періоду спостерігається погіршення зору, яке зростає під час повторного опромінення, що свідчить про комулятивний характер ушкоджень. Експерементальні дослідження на кроликах та спостереження за людьми вказують на існування механізму відновлення ушкоджених клітин, який вимагає тривалого часу (10—12 діб). Із зростанням часу та інтенсивності впливу ушкодження стають незворотними. При впливі випромінювання на око спостерігається ушкодження роговиці. Але серед усіх тканин ока найбільшу чутливість 2. Безпека життєдіяльності у повсякденних умовах виробництва й у побуті у діапазоні 1 — 10 ГГц має кришталик. Сильне ушкодження кришталика зумовлене тепловим впливом НВЧ (при щільності понад 100 мВт/см2). При меншій інтенсивності помутніння кришталика спостерігається лише у задній ділянці, при великій — по усьому об'єму кришталика. Утворення катаракти пояснюють не лише тепловою дією, а й впливом ряду інших не зовсім встановлених чинників. Велике значення має концентрація поля в середовищі з окремими діалектричними властивостями та об'ємними резонансними ефектами. На початку 60-х pp. у науково-технічній літературі з'явилися перші відомості про те, що люди, опромінені імпульсами НВЧ-коливань, чули звук. Залежно від тривалості та частоти повторів імпульсів цей звук сприймається як щебетання, цвірінькання чи дзюрчання в якійсь точці (всередині чи ззаду) голови. Це явище викликоло зацікавленість вчених, які розпочали систематичні дослідження на людях та тваринах (морських свинках, пацюках та кішках). Під час опитування люди могли повідомити про ними відчуття, для тварин необхідно було розробити спеціальну методику. Вона полягає в тому, що спочатку у тварини виробляється умовний рефлекс на звуковий сигнал певної частоти: тварина мусила виконувати певні дії, після чого отримувала їжу. Потім звуковий сигнал змінювався НВЧ-випро-мінюванням, яке викликало слуховий ефект на такій самій частоті. Було встановлено, що в обох випадках тварина веде себе однаково. Проводилися також досліди, які свідчать, що НВЧ-імпульси сприймаються слуховою системою. Для цього вживляли мікро-електроди, з яких знімали біопотенціали. З'ясувалось, що слуховий ефект притаманний частотам 200-300 МГц при тривалості прямокутних імпульсів, які змінюються в межах 1-100 мкс з частотою повторень 1-100 Гц. Вічуття звуку фіксувалося при дуже малих значеннях щільності потоку, середніх - починаючи з 0,1 мВт/см2, імпульсних - МВт/см2. Частота відчуття звуку не залежить від частоти НВЧ сигналу. На підставі розрахунків для моделі мозку, які відповідають експериментальним даним, було запропоновано таке пояснення слухового ефекту, під впливом імпульсів НВЧ-енергії збуджуються термопружні хвилі тиску в тканинах мозку, які діють за рахунок кісткової провідності на рецептори внутрішнього вуха -волоскові клітини завитки.
Я.І. Бедрій. Безпека життєдіяльності У тварин слуховий ефект викликає неспокій, вони намагаються уникнути опромінення. Питання, наскількі слуховий ефект неприємний чи шкідливий для людини, перебуває на стадії дослідження, як і питання про можливі неслухові ефекти імпульсного НВЧ-випромінення. Вивчення впливу ЕМП на різні біологічні об'єкти, що населяють біосферу, - тварин, комах, рослин, бактерій - природно, має і самостійний інтерес. Мається на увазі як доля кожного біологічного виду, що залежить від стану навколишнього середовища, так і взаємозв'язок і взаємодія об'єктів живої природи. Крім того, хоча ці дослідження проведені й у відносно малих масштабах, вони допомогли з'ясувати деякі механізми дії ЕМП, а також розширили коло питань, котрі зацікавили вчених і стали предметом подальшого вивчення. Наприклад, при дослідженні впливу НВЧ-випромінювання невеликої (нетеплової) інтенсивності на комах спостерігалися те-ратогенні ефекти (природжені аномалії розвитку), які іноді мали мутагенний характер, тобто успадковувалися. Дослідження проростання та подальшого розвитку кукурудзи із попередньо опроміненого міліметровими хвилями у сухому стані насіння виявило періодичне чергування стимулюючої та пригнічуючоїдії. При зміні дози опромінення спостерігався ефект післядії - вплив опромінення, яке виявляється через певний час (близько місяця). Вплив НВЧ опромінення на насіння люцерни призвів до зміни стану їх оболонки, що погано пропускає воду, і полегшив проростання. Виявлено значний вплив НВЧ-випромінювання на зміну фізико-хімічних властивостей та співвідношення клітинних структур. Особливо це призводить до затримки та припинення процесів розмноження бактерій та вірусів і знижує їх інфекційну активність. Оптичне випромінювання. Цим терміном позначається випромінювання видимого діапазону хвиль (0,4—0,77 мкм), а також межуючих з ним діапазонів - ІЧ з довжиною хвилі 0,77-0,1 мкм та УФ з довжиною хвилі 0,4-0,05 мкм. Таким чином, з боку довгих хвиль між оптичним діапазоном та НВЧ лежить маловивчений та поки що маловикористовуваний 2. Безпека життєдіяльності у повсякденних умовах виробництва й у побуті діапазон субміліметрових хвиль (0-01 мм), а з боку коротких хвиль - перехід до рентгенівського випромінювання. Вивчення оптичного діапазону (включаючи 14, видиме та УФ) не класифікується як радіочастотне, але, починаючи з 60-х pp., воно почало широко застосовуватися у радіоелектроніці. Радіоелектронні прилади, як і будь-які інші, мають ККД менше від 100 %, і частина енергії джерел живлення витрачається на покриття втрат та в кінцевому рахунку переходить у тепло, тобто, в ІЧ-випромінювання. Джерелами ІЧ-випромінювання служать багато елементів та вузлів радіоапаратури - електровакуумні, напівпровідникові та квантові прилади, індуктивності, резистори, трансформатори, з'єднувальні проводи тощо. Аналогічним чином електровакуумні прилади у скляних балонах дають випромінювання у видимій області спектра. Але такого роду випромінювання порівняно малої інтенсивності не викликає помітного екологічного впливу. Це саме стосується і некогерентного УФ-випромінювання, яке використовується у технологічному процесі фотолітографії при виробництві мікросхем. Лазерне випромінювання має ряд особливостей. Воно характерне великою часовою та просторовою когерентністю - кореляцією (сумісністю) фаз коливань у деякій точці простору на певну величину моменту часу, а також кореляцією фаз коливань у різних точках простору в один і той самий момент часу. Часова когерентність зумовлює монохроматичність (одночас-тотність) випромінювання, що випливає із самого принципу дії лазера як квантового прилада. У реальних умовах з ряду причин ширина спектра лазерного випромінювання обмежена, хоча й досить немала. Просторова когерентність зумовлює високу скерованість лазерного випромінювання, тобто малу кутову розбіжність променя на великих відстанях. У зв'язку із малою довжиною хвилі лазерне випромінювання може бути сфокусоване оптичними системами (лінзами та дзеркалами) невеликих геометричних розмірів, обмежених дифракцією, завдяки чому на малій площі досягається велика густина випромінювання. Вказані властивості та їх поєднання є основою для широкого використання лазерів. За їх допомогою здійснюється багатоканальний зв'язок на великих відстанях (причому кількість каналів тут у Я.І. Бедрііі. Безпека життєдіяльності десятки тисяч разів може перевищувати можливості НВЧ-діапа-зону), лазерна локація, дальнометрія, швидке опрацювання інформації. Вплив лазерного випромінювання на біологічні тканини може призвести до теплової, ударної дії світлового тиску, електрострикції (механічні коливання під дією електричної складової ЕМП), перебудови внутріклітинних структур. Залежно відрізних обставин прояв кожного ефекту, зокрема, чи їх сумарна дія можуть відрізнятися. При великій інтенсивності і дуже малій тривалості імпульсів спостерігається ударна дія лазерного випромінювання, яка поширюється з великою швидкістю та призводить до пошкодження внутрішніх тканин за відсутності зовнішніх проявів. Найважливішим чинником дії потужного лазерного випромінювання на біологічне середовище є тепловий ефект, який проявляється у вигляді опіку, іноді з глибинним руйнуванням - деформацією і навіть випаровуванням клітинних структур. При менш інтенсивному випромінюванні на шкірі можуть спостерігатися видимі зміни (порушення пігментації, почервоніння) з досить чіткими межами ураженої ділянки. Шкірний покрив, який сприймає більшу частину енергії лазерного випромінювання, значною мірою захищає організм від серйозних внутрішніх ушкоджень. Але є відомості, що опромінення окремих ділянок шкіри викликає порушення у різних системах організму, особливо нервової та серцево-судинної. У зв'язку з різною поглинальною здатністю живих тканин при відносно слабких ушкодженнях шкіри, можуть виникати серйозні ураження внутрішніх тканин - набряки, крововиливи, змертвіння, згортання крові. Результатом навіть дуже малих доз лазерного випромінювання можуть бути такі явища, як майже і при НВЧ-опроміненні - нестійкість артеріального тиску, порушення серцевого ритму, втома, дратливість тощо. Звичайно, такі порушення зворотні і зникають після відпочинку. Найсильніше впливає лазерне випромінювання на очі. Тут найсерйознішу небезпеку становить випромінювання УФ-діапазо-ну, яке може призвести до коагуляції білка, рогівки та опіку слизової оболонки, що викликає остаточну сліпоту. Вплив видимого діапазону впливає на клітини сітківки, внаслідок чого настає тимчасова сліпота або втрата зору від опіку чи наступна поява рубце- 2. Безпека життєдіяльності у повсякденних умовах виробництва и у побуті вих ран. Випромінювання ІЧ-діапазону, яке поглинається райдужною оболонкою, кришталиком та скловидним тілом, більш-менш безпечне, але також може спричинити сліпоту. Таким чином, лазерне випромінювання ушкоджує (іноді не-зворотно) усі структури ока, а оскільки око є оптичною системою, виникають другорядні біологічні ефекти як реакція на опромінення. Внаслідок лазерного опромінення у біологічних тканинах можуть виникати вільні радикали, які активно взаємодіють з молекулами та порушують нормальний хід процесів обміну на клітинному рівні. Наслідком цього є загальне погіршення стану здоров'я (як і при впливі іонізаційних випромінювань). 2.3.2. Нормативи та стандарти Усе живе в біосфері постійно перебуває під впливом ЕМП природного походження, в зв'язку з чим у організмів в процесі еволюції виробилися механізми, які дають змогу безболісно зносити середній рівень фонового опромінення, «також окремі пристосувальні можливості,
Читайте также: А.1 Класифікація машин для теплової обробки кормів і технологічні схеми теплової обробки кормів Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|