Задача 2 Множественная регрессия и корреляция
Стр 1 из 4Следующая ⇒ Задачи для зачёта по эконометрике Задача 1 Парная регрессия и корреляция Пример. По территориям региона приводятся данные за 1991 г. Таблица D.1
Требуется: 1. Построить линейное уравнение парной регрессии 2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации. 3. Оценить статистическую значимость параметров регрессии и корреляции с помощью 4. Выполнить прогноз заработной платы 5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал. 6. На одном графике построить исходные данные и теоретическую прямую. Решение 1. Для расчета параметров уравнения линейной регрессии строим расчетную таблицу D.2. Таблица D.2
Получено уравнение регрессии: С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,89 руб. 2. Тесноту линейной связи оценит коэффициент корреляции:
Это означает, что 51% вариации заработной платы ( Качество модели определяет средняя ошибка аппроксимации:
Качество построенной модели оценивается как хорошее, так как 3. Оценку значимости уравнения регрессии в целом проведем с помощью
Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы Оценку статистической значимости параметров регрессии проведем с помощью Табличное значение Определим случайные ошибки
Тогда
Фактические значения
поэтому параметры Рассчитаем доверительные интервалы для параметров регрессии
Доверительные интервалы
Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью 4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:
5. Ошибка прогноза составит:
Предельная ошибка прогноза, которая в
Доверительный интервал прогноза:
Выполненный прогноз среднемесячной заработной платы является надежным ( 6. В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рис. D.1):
Рис. D.1. Варианты индивидуальных заданий По территориям региона приводятся данные за 1991 г. Требуется: 1. Построить линейное уравнение парной регрессии 2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации. 3. Оценить статистическую значимость параметров регрессии и корреляции с помощью 4. Выполнить прогноз заработной платы 5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал. 6. На одном графике построить исходные данные и теоретическую прямую. Вариант 1
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7
Вариант 8
Вариант 9
Вариант 10
Задача 2 Множественная регрессия и корреляция
Пример. По
Требуется: 1. Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат. 2. Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их. 3. Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации. 4. С помощью 5. С помощью частных 6. Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор. Решение Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:
Найдем средние квадратические отклонения признаков:
1. Вычисление параметров линейного уравнения множественной регрессии. Для нахождения параметров линейного уравнения множественной регрессии
необходимо решить следующую систему линейных уравнений относительно неизвестных параметров
либо воспользоваться готовыми формулами:
Рассчитаем сначала парные коэффициенты корреляции:
Находим
Таким образом, получили следующее уравнение множественной регрессии:
Коэффициенты
Т.е. уравнение будет выглядеть следующим образом:
Так как стандартизованные коэффициенты регрессии можно сравнивать между собой, то можно сказать, что ввод в действие новых основных фондов оказывает большее влияние на выработку продукции, чем удельный вес рабочих высокой квалификации. Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности:
Вычисляем:
Т.е. увеличение только основных фондов (от своего среднего значения) или только удельного веса рабочих высокой квалификации на 1% увеличивает в среднем выработку продукции на 0,61% или 0,20% соответственно. Таким образом, подтверждается большее влияние на результат 2. Коэффициенты парной корреляции мы уже нашли:
Они указывают на весьма сильную связь каждого фактора с результатом, а также высокую межфакторную зависимость (факторы Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии. При двух факторах частные коэффициенты корреляции рассчитываются следующим образом:
Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи. Именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи. Коэффициент множественной корреляции определить через матрицу парных коэффициентов корреляции:
где
– определитель матрицы парных коэффициентов корреляции;
– определитель матрицы межфакторной корреляции.
Коэффициент множественной корреляции
Аналогичный результат получим при использовании других формул:
Коэффициент множественной корреляции показывает на весьма сильную связь всего набора факторов с результатом. 3. Нескорректированный коэффициент множественной детерминации Скорректированный коэффициент множественной детерминации
определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и поэтому может сравниваться по разным моделям с разным числом факторов. Оба коэффициента указывают на весьма высокую (более 4. Оценку надежности уравнения регрессии в целом и показателя тесноты связи
В нашем случае фактическое значение
Получили, что 5. С помощью частных
Найдем
Имеем
Получили, что Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения 6. Общий вывод состоит в том, что множественная модель с факторами
Варианты индивидуальных заданий По 20 предприятиям региона изучается зависимость выработки продукции на одного работника Требуется: 1. Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат. 2. Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их. 3. Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации. 4. С помощью 5. С помощью частных 6. Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор. Вариант 1
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|