Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Строение и функции гемоглобина




Гемоглобин – главный компонент эритроцита и основной дыхательный пигмент, обеспечивает перенос кислорода (О2) из легких в ткани и углекислого газа (СО2) из тканей в легкие. Кроме того, он играет существенную роль в поддержании кислотно-основного равновесия крови. Подсчитано, что в одном эритроците содержится ~340 000 000 молекул гемоглобина, каждая из которых состоит примерно из 103 атомов. В крови человека в среднем содержится ~750 г гемоглобина.

Гемоглобин представляет собой сложный белок, относящийся к группе гемопротеинов белковый компонент в котором представлен глобином, небелковый – четырьмя одинаковыми железопорфириновыми соединениями, которые называются гемами. Атом железа (II), расположенный в центре гема, придает крови характерный красный цвет (см. рис. 1). Наиболее характерным свойством гемоглобина является обратимое присоединение газов О2, СО2 и др.

Рис. 1. Структура гемоглобина

Было установлено, что гем приобретает способность переносить О2 лишь при условии, что его окружает и защищает специфический белок – глобин (сам по себе гем не связывает кислород). Обычно при соединении О2 с железом (Fe) один или более электронов необратимо переходят с атомов Fe на атомы О2. Иными словами, происходит химическая реакция. Экспериментально было доказано, что миоглобин и гемоглобин обладают уникальной способностью обратимо связывать O2 без окисления гемового Fe2+ в Fe3+.

Таким образом, процесс дыхания, который на первый взгляд кажется столь простым, на самом деле осуществляется благодаря взаимодействию многих видов атомов в гигантских молекулах чрезвычайной сложности.

В крови гемоглобин существует, по крайней мере, в четырех формах: оксигемоглобин, дезоксигемоглобин, карбоксигемоглобин, метгемоглобин. В эритроцитах молекулярные формы гемоглобина способны к взаимопревращению, их соотношение определено индивидуальными особенностями организма.

Как и любой другой белок, гемоглобин имеет определенный набор характеристик, по которым его можно отличить от других белковых и небелковых веществ в растворе. К таким характеристикам относятся молекулярная масса, аминокислотный состав, электрический заряд, химические свойства.

На практике чаще всего используются электролитные свойства гемоглобина (на этом основаны кондуктивные методы его исследования) и способность гема присоединять различные химические группы, приводящие к изменению валентности Fe и окраски раствора (калориметрические методы). Однако в многочисленных исследованиях показано, что результат кондуктивных методов определения гемоглобина зависит от электролитного состава крови, это делает затруднительным применение такого исследования в неотложной медицине

Трансляция (синтез белка)

Трансляция (англ. translation – перевод) – это биосинтез белка на матрице мРНК.

После переноса информации с ДНК на матричную РНК начинается синтез белков. Каждая зрелая мРНК несет информацию только об одной полипептидной цепи. Если клетке необходимы другие белки, то необходимо транскрибировать мРНК с иных участков ДНК.

Биосинтез белков или трансляция происходит на рибосомах, внутриклеточных белоксинтезирующих органеллах, и включает 5 ключевых элементов:

· матрица – матричная РНК,

· растущая цепь – полипептид,

· субстрат для синтеза – 20 протеиногенных аминокислот,

· источник энергии – ГТФ,

· рибосомальные белки, рРНК и белковые факторы.

Выделяют три основных стадии трансляции: инициация, элонгация, терминация.

Инициация

Для инициации необходимы мРНК, ГТФ, малая и большая субъединицы рибосомы, три белковых фактора инициации (ИФ-1, ИФ-2, ИФ-3), метионин и тРНК для метионина.

В начале этой стадии формируются два тройных комплекса:

· первый комплекс – мРНК + малая субъединица + ИФ-3,

· второй комплекс – метионил-тРНК + ИФ-2 + ГТФ.

После формирования тройные комплексы объединяются с большой субъединицей рибосомы. В этом процессе активно участвуют белковые факторы инициации, источником энергии служит ГТФ. После сборки комплекса инициирующая метионил-тРНК связывается с первым кодоном АУГ матричной РНК и располагается в П-центре (пептидильный центр) большой субъединицы. А-центр (аминоацильный центр) остается свободным, он будет задействован на стадии элонгации для связывания аминоацил-тРНК.

События стадии инициации

После присоединения большой субъединицы начинается стадия элонгации.

Элонгация

Для этой стадии необходимы все 20 аминокислот, тРНК для всех аминокислот, белковые факторы элонгации, ГТФ. Удлинение цепи происходит со скоростью примерно 20 аминокислот в секунду.

Элонгация представляет собой циклический процесс. Первый цикл (и следующие циклы) элонгации включает три шага:

1. Присоединение аминоацил-тРНК (еще второй) к кодону мРНК (еще второму), аминокислота при этом встраивается в А-центр рибосомы. Источником энергии служит ГТФ.

2. Фермент пептидилтрансфераза осуществляет перенос метионина с метионил-тРНК (в П-центре) на вторую аминоацил-тРНК (в А-центре) с образованием пептидной связи между метионином и второй аминокислотой. При этом уже активированная СООН-группа метионина связывается со свободной NH2-группой второй аминокислоты. Здесь источником энергии служит макроэргическая связь между аминокислотой и тРНК.

3. Фермент транслоказа перемещает мРНК относительно рибосомы таким образом, что первый кодон АУГ оказывается вне рибосомы, второй кодон (на рисунке) становится напротив П-центра, напротив А-центра оказывается третий кодон (на рисунке). Для этих процессов необходима затрата энергии ГТФ. Так как вместе с мРНК перемещаются закрепленные на ней тРНК, то инициирующая первая тРНК выходит из рибосомы, вторая тРНК с дипептидом помещается в П-центр.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...