Задача покрытия схем набором конструктивных модулей.
⇐ ПредыдущаяСтр 15 из 15
Математическая постановка задачи покрытия зависит от типа конструктивных модулей набора. Различают 3 типа конструктивных модулей: 1) Каждый модуль содержит базовые логические элементы одного типа, при этом все входы и выходе логических элементов являются выводами модуля. Например: 2) Тоже что и предыдущий тип, однако в одном конструктивном модуле могут содержаться разнотипные логические элементы.
Модули 1-го и 2-го типов называются модулями с несвязанными элементами. 3)
Рассмотрим математическую постановку задачи покрытия схемы конструктивными модулями с несвязанными элементами (1-го и 2-го типов). Обозначим через bi количество логических элементов ti типа, содержащихся в функционально-логической схеме (ФЛС). При таком подходе состав ФЛС может быть описан матрицей-столбцом: B= || bi || n, где n – число типов логических элементов схемы, bi – число логических элементов ti типа в ФЛС. Будем считать, что каждый тип конструктивного модуля Qj в общем случае содержит несколько типов ti базовых элементов, а весь набор конструктивных модулей Q может быть описан матрицей A= || aij || nxm, где aij – количество базовых логических элементов типа ti в конструктивном модуле типа Qj ( Пример.
В качестве критерия оптимизации будем использовать минимум стоимости покрытия. Обозначим cj стоимость конструктивного модуля Qj.
Пусть для покрытия ФЛС необходимо выделить yj конструктивных модулей Qj, тогда в качестве целевой функции можно взять функцию вида:
Будем считать, что каждый тип базового логического элемента схемы может быть реализован как базовый логический элемент того же набора, так и БЛЭ другого типа набора. Например: Обозначим через xki количество логических элементов типа tk, которое идет на покрытие логических элементов схемы типа ti. Возможность замены БЛЭ типа tk на БЛЭ типа ti будем описывать матрицей W =|| wki || nxn, Очевидно, что xki >0 если wki =1. Учитывая введенные обозначения, задачу покрытия можно сформулировать следующим образом: если yj количество требуемых конструктивных модулей типа Qj, а в каждом Qj конструктивном модуле содержится aij элементов типа ti, то Очевидно, что для покрытия всей ФЛС необходимо выполнение следующего условия:
где второе слагаемое – количество логических элементов других типов, которые идут в покрытии на реализацию логических элементов типа ti; последнее слагаемое – количество логических элементов типа ti, которые идут на реализацию логических элементов других типов. Т. о., ставится задача отыскания таких значений yj и xki, удовлетворяющих (**), чтобы обеспечивался минимум целевой функции (*) – стоимости покрытия. На практике используются приближенные методы, опирающиеся на специфику используемых конструктивных модулей. Если имеем дело с несвязанными элементами конструктивного модуля, то здесь в результате определения требуемого числа модулей не осуществляется привязка логических элементов схемы к конструктивным модулям, отсюда появляется возможность оптимизации по другому критерию, в частности по критерию минимума межблочных связей.
Пример Q={Q1, Q2, Q3}, t={t1, t2, t3, t4} приведен нами выше. Требуется покрыть ФЛС, описываемую вектором B={ 5, 4, 1, 1 }, заданным набором конструктивных модулей. Блок-схема алгоритма определения требуемого числа конструктивных модулей по критерию минимума стоимости покрытия приведена на рисунке.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|