Автокорреляция в остатках. Критерий Дарбина-Уотсона
Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу. 1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака. 2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени . От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках. Один из более распространенных методов определения автокорреляции в остатках – это расчет критерия Дарбина-Уотсона: . (4.5) Т.е. величина есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии. Можно показать, что при больших значениях существует следующее соотношение между критерием Дарбина-Уотсона и коэффициентом автокорреляции остатков первого порядка : . (4.6) Таким образом, если в остатках существует полная положительная автокорреляция и , то . Если в остатках полная отрицательная автокорреляция, то и, следовательно, . Если автокорреляция остатков отсутствует, то и . Т.е. . Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам (см. приложение E) определяются критические значения критерия Дарбина-Уотсона и для заданного числа наблюдений , числа независимых переменных модели и уровня значимости . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:
– есть положительная автокорреляция остатков, отклоняется, с вероятностью принимается ; – зона неопределенности; – нет оснований отклонять , т.е. автокорреляция остатков отсутствует; – зона неопределенности; – есть отрицательная автокорреляция остатков, отклоняется, с вероятностью принимается . Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу . Пример. Проверим гипотезу о наличии автокорреляции в остатках для аддитивной модели нашего временного ряда. Исходные данные и промежуточные расчеты заносим в таблицу:
Таблица 4.11
Фактическое значение критерия Дарбина-Уотсона для данной модели составляет:
. Сформулируем гипотезы: – в остатках нет автокорреляции; – в остатках есть положительная автокорреляция; – в остатках есть отрицательная автокорреляция. Зададим уровень значимости . По таблице значений критерия Дарбина-Уотсона определим для числа наблюдений и числа независимых параметров модели (мы рассматриваем только зависимость от времени ) критические значения и . Фактическое значение -критерия Дарбина-Уотсона попадает в интервал (1,37<2,24<2,63). Следовательно, нет основания отклонять гипотезу об отсутствии автокорреляции в остатках. Существует несколько ограничений на применение критерия Дарбина-Уотсона. 1. Он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака. 2. Методика расчета и использования критерия Дарбина-Уотсона направлена только на выявление автокорреляции остатков первого порядка. 3. Критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.
Приложение A [5] Случайные переменные
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|