Множення і ділення невід’ємних раціональних чисел. Теореми про існування та єдиність добутку та частки. Властивості (закони) множення.
6. При означенні операцій множення та ділення невід’ємних раціональних чисел будемо враховувати вимогу про те, щоб нові означення не суперечили правилам виконання дій множення і ділення цілих чисел. Як відомо, 1•3=3, що означає Означення: добутком двох дробів будемо називати дріб, чисельник якого дорівнює добутку чисельників даних дробів, а знаменник – добутку знаменників. Символічно означення можна записати так: Теорема 1: операція множення в множині невід’ємних раціональних чисел існує і єдина. Доведення. Для доведення теореми розглянемо два невід’ємних раціональних числа Теорема 2: операція множення невід'ємних раціональних чисел підкоряється комутативному та асоціативному законам, а з операцією додавання пов’язана дистрибутивним законом. Символічно цю теорему можна записати так: 1) ("
Доведення. Пропонуємо студентам комутативний закон множення довести самостійно. Для доведення асоціативності множення розглянемо три невід’ємних раціональних числа а, b і с таких, що а= Аналогічно доводимо дистрибутивність операції множення відносно додавання, а саме: якщо а, b, с – невід’ємні раціональні числа такі, що а= Означення: часткою від ділення невід’ємного раціонального числа а на додатне раціональне число b називається невід’ємне раціональне число с=а:b таке, що а=b×с. В означенні нічого не говориться про існування та єдиність такої операції. Саме тому слід сформулювати та довести відповідну теорему. Теорема: операція ділення в множині невід’ємних раціональних чисел існує і єдина. Доведення. Розглянемо три невід’ємних раціональних числа а, b≠0, с такі, що а= Із доведеної теореми випливає наступна властивість множини невід’ємних раціональних чисел: множина невід’ємних раціональних чисел замкнена відносно операції ділення, крім ділення на нуль.
Читайте также: A. Троакарна цистостомія, госпіталізація в урологічне відділення Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|