Основные разделы курса «Механика грунтов»
Основные понятия курса. Цели и задачи курса. Состав, строение, состояние и физические свойства грунтов
Основные понятия курса.
Задачи курса механики грунтов.
Состав и строение грунтов.
Структура и текстура грунта, структурная прочность и связи в грунте.
Физические свойства грунтов.
Строительная классификация грунтов.
Связь физических и механических характеристик грунтов.
Понятие об условном расчетном сопротивлении.
Механические свойства грунтов
Деформируемость грунтов
Компрессионные испытания, получение и анализ компрессионных кривых.
Деформационные характеристики грунтов.
Принцип линейной деформируемости.
Водопроницаемость грунтов.
Закон ламинарной фильтрации.
Закономерности фильтрации воды в сыпучих и связных грунтах.
Прочность грунтов.
Трение и сцепление в грунтах.
Сопротивление грунтов при одноплоскостном срезе.
Сопротивление сдвигу при сложном напряженном состоянии. Теория прочности Кулона-Мора.
Прочность грунтов в неконсолидированном состоянии
Полевые методы определения параметров механических свойств грунтов.
Определение напряжений в массивах грунтов.
Определение контактных напряжений по подошве сооружения.
Классификация фундаментов и сооружений по жесткости.
Модель местных упругих деформаций и упругого полупространства
Влияние жесткости фундаментов на распределение контактных напряжений.
Распределение напряжений в грунтовых основаниях от собственного веса грунта.
Определение напряжений в грунтовом массиве от действия местной нагрузки на его поверхности.
Задача о действии вертикальной сосредоточенной силы.
Плоская задача. Действие равномерно распределенной нагрузки.
Пространственная задача. Действие равномерно распределенной нагрузки.
Метод угловых точек.
Влияние формы и площади фундамента в плане.
Прочность и устойчивость грунтовых массивов. Давление грунтов на ограждения.
Критические нагрузки на грунты основания. Фазы напряженного состояния грунтовых оснований
Начальная критическая нагрузка
4.1.2. Расчетное сопротивление и расчетное давление
Предельная критическая нагрузка
Практические способы расчета несущей способности и устойчивости оснований.
Устойчивость откосов и склонов
Понятие о коэффициенте запаса устойчивости откосов и склонов.
Простейшие методы расчетов устойчивости
Устойчивость откосов в идеально сыпучих грунтах (ϕ ≠0; с=0)
Учет влияния фильтрационных сил
Устойчивость вертикального откоса в идеально связных грунтах (ϕ=0; с≠0)
Устойчивость вертикального откоса в грунтах, обладающих трением и сцеплением (ϕ ≠0; с≠0)
Инженерные методы расчёта устойчивости откосов и склонов
Метод круглоцилиндрических поверхностей скольжения
Мероприятия по повышению устойчивости откосов и склонов
Понятия о взаимодействии грунтов с ограждающими конструкциями (давление покоя, активное и пассивное давление).
Определение активного давления на вертикальную грань стенки для сыпучего грунта и связного грунта, учёт пригрузки на поверхности засыпки.
4.6.2. Учёт пригрузки на поверхности засыпки.
Деформации грунтов и расчет осадок оснований сооружений.
Теоретические основы расчета стабилизированных деформаций оснований.
Постановка задачи.
Определение осадок линейно-деформируемого полупространства или слоя грунта ограниченной мощности.
Основные предпосылки приближенных методов расчёта осадок.
Практические методы расчета конечных деформаций оснований фкндаментов.
Расчёт осадок методом послойного суммирования.
Расчет осадок методом эквивалентного слоя
Практические методы расчёта осадок оснований фундаментов во времени.
5 Классификация по ГОСТ 25100-95 (Грунты. Классификация).
В соответствии с ГОСТ 25100-95 все грунты классифицируют в зависимости от происхождения и условий образования, характера структурных связей между частицами, состава и строительных свойств грунтов.
Грунты подразделяют на два основных класса: скальные и нескальные.
Скальные грунты — это грунты с жесткими структурными связями, к которым относятся магматические, метаморфические, осадочные сцементированные и искусственные.
Скальные грунты подразделяются на разновидности в зависимости от предела прочности на одноосное сжатие в водонасыщенном состоянии, по степени размягчения в воде, растворимости и др.
Нескальные грунты — это грунты без жестких структурных связей. К нескальным грунтам относят рыхлые горные породы, включающие несвязные (сыпучие) и связные породы, прочность которых во много раз меньше прочности связей минералов, слагающих эти породы. Характерной особенностью этих грунтов является их раздробленность, дисперсность, что коренным образом отличает их от скальных весьма прочных пород.
В состав грунтов входят твердые минеральные частицы, вода в различных видах и состояниях и газообразные включения. В состав некоторых грунтов входят органические соединения.
Твердые минеральные частицы грунта представляют систему разнообразных по форме, составу и размерам зерен. Размеры зерен колеблются от десятков сантиметров для валунов до мельчайших коллоидных частиц.
Нескальные грунты по размерам минеральных частиц подразделяют на следующие виды:
- крупнообломочные с содержанием частиц крупнее 2 мм более 50% по массе;
- песчаные;
- пылевато-глинистые.
По плотности сложения песчаные грунты подразделяют на виды в зависимости от значения коэффициента пористости.
Среди пылевато-глинистых грунтов необходимо выделять грунты, проявляющие специфические неблагоприятные свойства при замачивании,— просадочные и набухающие. К просадочным относятся грунты, которые под действием внешней нагрузки или собственного веса при замачивании водой дают осадку, называемую просадкой.
К набухающим относятся грунты, которые при замачивании водой или химическими растворами увеличиваются в объеме, и при этом относительное набухание без нагрузки составляет esme0,04.
6. Составные части (фазы) грунта. Характеристики физических свойств.
В большинстве случаев грунты состоят из трех компонентов: твердых частиц, воды и воздуха или иного газа, т. е. составные части грунта находятся в трех состояниях: твердом, жидком и газообразном. Соотношение этих компонентов обусловливает многие свойства грунтов.
Если грунт состоит из твердых частиц, все поры между которыми заполнены водой, то он является двухкомпонентной (двухфазной) системой. Иногда такой грунт называют грунтовой массой. В большинстве же случаев в грунте, кроме твердых частиц и воды, имеется воздух или иной газ, либо растворенный в поровой воде или находящийся в виде пузырьков, окруженных поровой водой, либо свободно сообщающийся с атмосферой. Такой грунт является трехкомпонентной (трехфазной) системой.
В мерзлом грунте, кроме того, содержится лед. Он придает грунту специфические свойства, которые приходится учитывать, особенно при строительстве в районах распространения вечномерзлых грунтов. Мерзлый грунт является четырехкомпонентной (четырехфазной) системой.
В некоторых грунтах присутствуют органические вещества в виде растительных остатков или гумуса. Наличие даже сравнительно небольшого количества таких веществ в грунте, существенно отражается на его свойствах.
Для оценки строительных свойств грунтов пользуются рядом его характеристик.
Изобразим схему 1 см3 грунта (3-х фазная система).
1-ая группа характеристик, определяемых опытным путем.
1. Плотность грунта ненарушенной (естественной) структуры: т/м3
Удельный вес грунта: (кН/м3) [15…22 кН/м3]
2. Плотность твердых частиц грунта: т/м3
Удельный вес твердых частиц: (кН/м3) [25…28 кН/м3]
3. Весовая влажность грунта: % (изменяется в широких пределах и особенно важна для глинистых грунтов)
2-ая группа характеристик, определяемых расчетами.
1. Плотность сухого грунта: т/м3
Удельный вес сухого грунта: (кН/м3) [10…19 кН/м3]
; отсюда
2. Пористость грунта:
Если обозначить: n – объем пор в единице объема грунта; m – объем твердых частиц в единице объема грунта. n + m = 1
3. Коэффициент пористости грунта:
Для слабых грунтов может быть и больше (до 12 – в торфах).
тогда (2)
(3) m (4)
9. Виды воды в грунтах. Свойства различных видов воды.
Вода в пылевато-глинистых грунтах в значительной степени предопределяет свойства грунта, которые зависят в первую очередь от ее относительного содержания. Твердые частицы грунта, состоящие из тех или иных обычно кристаллических минералов, имеют на поверхности заряд статического электричества, чаще всего отрицательный. Молекулы же воды, являясь диполями, и ионы различных веществ противоположного заряда, растворенных в грунтовой воде, попадая в поле заряда частицы грунта, ориентируются определенным образом и притягиваются к поверхности этой частицы. В результате поверхность твердой частицы покрывается монослоем молекул воды. Этот первый слой молекул воды, адсорбированных на поверхности твердой частицы с ее наружной стороны, будет иметь заряд, аналогичный заряду поверхности твердой частицы, и, следовательно, станет воздействовать на близко расположенные другие молекулы воды. Таким образом возникают достаточно стройные цепочки молекул воды (рис. 1.2).
Электромолекулярные удельные силы взаимодействия между поверхностью твердой частицы и молекулами воды у самой поверхности достигают 1000 МПа. По мере удаления от нее удельные силы взаимодействия быстро убывают и на некотором расстоянии уменьшаются до нуля. Вне пределов, ограниченных этим расстоянием, вода обладает свойствами, присущими ей в открытых сосудах, и ее молекулы не притягиваются к поверхности твердой частицы. Эту воду принято называть свободной. Вода, адсорбированная на поверхности твердых частиц, называется связанной.
Прочносвязанная вода, слой которой состоит из одного или нескольких слоев молекул, обладает свойствами, существенно отличающимися от свойств свободной воды. По свойствам прочносвязанная вода скорее соответствует твердому, а не жидкому телу. Она не отделяется от твердых частиц при воздействии сил, в тысячи раз превышающих силы земного притяжения, замерзает при температуре значительно ниже 0°С, имеет большую, чем свободная вода, плотность, обладает ползучестью; такую воду можно отделять от твердых частиц лишь выпариванием при температуре выше 100 °С.
Рыхлосвязанная вода представляет собой диффузный переходный слой от прочносвязанной воды к свободной. Она обладает свойствами прочносвязанной воды, однако они выражены слабее. Это обусловлено резким уменьшением в слое рыхлосвязанной воды удельных сил взаимодействия между поверхностью твердой частицы и молекулами воды (см. рис. 1.2, б).
Связность (прочность) грунта, зависящая от толщины слоя рыхлосвязанной воды, может резко снижаться при нарушении определенного расположения молекул воды и частиц (например, при динамических воздействиях или перемятии). Со временем возможно восстановление прочности (явление тиксотропии).
Итак, пылевато-глинистые грунты, особенно содержащие коллоидные частицы, обладают свойствами пластичности, связности, ползучести, набухаемости при увлажнении, усадки при высыхании, размокаемости, водонепроницаемости, тиксотропности и т. д.
10. Связаная вода. Ее природа.
Выделяют две категории воды в горных породах - свободную и связанную. Связанная вода находится и удерживается в наиболее мелких порах и трещинах горных пород и испытывает со стороны поверхности твердой фазы минералов "связывающее" влияние разной природы и интенсивности, изменяющее ее структуру и придающее ей аномальные свойства, то есть не такие, как у обычной, свободной воды. Суммарное содержание связанной воды в литосфере Земли составляет около 42% от общего количества воды в земной коре. Однако связанную воду не так просто извлечь из породы, в которой она находится. Под действием поверхностных сил разной природы она относительно прочно удерживается на поверхности минералов, не подчиняется силам гравитации и ее передвижение в породах может происходить лишь под влиянием сил иной природы.
Первые представления о связанной воде возникли почти сто лет назад.
|
|
Рис. 1. Строение единичной молекулы воды: а - структура; б - модель электронных орбиталей; в - распределение зарядов (r - длина связи Н-Н, равная 1,41*10-4 мкм; l - длина связи Н-О, равная 0,96*10-4мкм; a - угол Н-О-Н, равный 104,5њ).
|
К настоящему времени достаточно хорошо изучено строение единичной молекулы воды, состоящей из двух атомов водорода и одного атома кислорода. Она характеризуется дипольным строением и тетраэдрическим распределением зарядов: два положительных - на атомах водорода, два отрицательных - на неподеленных парах электронов атома кислорода (рис. 1). Такое строение молекулы воды позволяет ей образовывать до четырех водородных связей с соседними молекулами.
Многочисленными экспериментами, было установлено, что некоторые свойства связанной воды, находящейся в породах в виде тонких, так называемых граничных, слоев вблизи твердой поверхности, существенно отличаются от свойств обычной свободной воды. Их стали называть аномальными. В последнее время было убедительно установлено, что плотность связанной воды в тонких пленках повышена всего лишь на 1,5% по сравнению со свободной водой и составляет в среднем около 1,02 г/см3.
Основная причина понижения температуры замерзания связанной воды - взаимодействие ее с твердой минеральной поверхностью, точнее - с ее активными центрами. Энергия взаимодействия молекул воды с активными центрами поверхности минералов, а также с находящимися в поровом растворе ионами больше, чем энергия взаимодействия молекул воды между собой. Это и приводит к тому, что активный центр нарушает сетку водородных связей в воде, а фазовый переход осуществляется лишь при более низкой температуре. Не менее интересным свойством связанной воды в горных породах является ее пониженная по сравнению со свободной водой растворяющая способность. Связанная вода способна растворять меньше солей, чем обычная вода. Это обстоятельство также является следствием измененной структуры связанной воды.
Другое аномальное свойство связанной воды - понижение ее диэлектрической проницаемости в несколько раз по сравнению со свободной водой. Если для обычной воды диэлектрическая проницаемость равна 81, то для связанной воды эта величина уменьшается до 3 - 40, в зависимости от толщины водной пленки.
11. Влияние связаной воды на свойства грунта.
Влияние связанной воды на состояние пород наиболее сильно проявляется у дисперсных, состоящих из отдельных частиц, горных пород, особенно таких, как глинистые и лёссовые. Это объясняется тем, что дисперсные горные породы обладают большой величиной удельной поверхности, достигающей в некоторых глинах 600 - 800 м2/г. А поскольку количество связанной воды в породе в первом приближении пропорционально ее удельной поверхности, то становится понятным, почему именно в глинах содержится больше всего связанной воды.
Глинистые породы предрасположены к воде и всегда содержат связанную воду. Если в них присутствует только адсорбционная вода, то они представляют собой довольно прочные породы твердой консистенции. При наличии в них осмотической и капиллярной воды они приобретают свойство пластичности, податливости, липкости, капиллярной связности, легко деформируются и резко теряют за счет увлажнения свою прочность.
Большое влияние связанная вода оказывает на процессы тепломассопереноса в породах. Поскольку она прочно удерживается в тонких порах и микротрещинах и к тому же обладает повышенной вязкостью, "сдвинуть" эту воду чрезвычайно трудно, она не подчиняется обычным законам фильтрации, осуществляемой под действием гидродинамического напора. Поэтому глины и являются обычно водоупором, не пропускающим грунтовые воды или фильтрующим сквозь себя воду очень медленно.
Очень сильно связанная вода влияет на прочность и деформируемость практически любых горных пород. Она оказывает "расслабляющее и размягчающее" действие на многие горные породы, приводит к понижению их прочности и увеличению деформируемости. Характерным примером ее влияния в этом отношении являются лёссовые породы. Эти породы, в отличие от глинистых, не предрасположены к воде. В них содержится главным образом только адсорбционная связанная вода и частично капиллярная, заполняющая лишь самые тонкие микропоры и микрокапилляры в породе. При этом лёссы обладают достаточной прочностью, так что способны "держать" крутые, почти вертикальные стенки естественных обнажений высотой в десятки метров.
Не в меньшей мере влияние связанной воды сказывается на деформировании и прочности магматических, метаморфических и сцементированных осадочных горных пород. Наличие связанной воды в кристаллической решетке минерала снижает его упругость. Но в еще большей степени на деформируемость и прочность таких пород влияет наличие в микротрещинах, на контактах зерен или кристаллов адсорбционных пленок связанной воды. Они понижают поверхностную энергию минералов горной породы и тем самым облегчают развитие в породе различных механических микронарушений, дислокаций, микротрещин и т.д., особенно в том случае, если порода находится под напряжением. Вследствие этого порода начинает "ползти", она деформируется с той или иной скоростью при том же самом постоянном напряжении. Практически все горные породы можно рассматривать как дисперсные системы, то есть имеющие большую удельную поверхность, образованную внутренними границами раздела между минеральными фазами одинакового или разного состава.
12. Газовая составляющая грунта. Ее влияние на свойства грунта.
Содержание воды и газа в фунте зависит от объема его пор: чем больше поры заполнены водой, тем меньше в них содержится газов. В самых верхних слоях грунта газообразная составляющая представлена атмосферным воздухом, ниже - азотом, метаном, сероводородом к другими газами. Необходимо подчеркнуть, что метан, сероводород, угарный газ - ядовиты и могут содержаться в грунте в концентрациях, опасных для жизни работающих в слабо проветриваемых выемках. Интенсивность газообмена между атмосферой и грунтом зависит от состава и состояния грунта и повышается с увеличением содержания и размеров трещин пустот, пор. В газообразной составляющей всегда присутствуют пары воды.
Газы в грунте могут быть в свободном состоянии или растворены в воде. Свободный газ подразделяется на не защемленный сообщающийся с атмосферой, и защемленный, находящийся в контактах между частицами и пленками воды в виде мельчайших пузырьков в воде. В паровой воде всегда содержится то или иное количество растворенного газа. Повышение давления или понижение температуры приводит к увеличению количества растворенного газа.
Содержание в грунте защемленного и растворенного в воде газа существенно сказывается на свойствах грунта и протекающих в них процессах. Уменьшение давления вследствие разработки котлована или извлечения образца грунта на поверхность может привести к выделению пузырьков газа и разрушению природной структуры грунта. Наоборот, увеличение давления при передаче нагрузки от сооружения может сопровождаться повышением содержания растворенного в воде газа. В то же время увеличение содержания в воде пузырьков воздуха может увеличить сжимаемость воды в сотни раз и сделать ее соизмеримой со сжимаемостью скелета грунта.
Наблюдения показывают, что при подтоплении территории в обводненном грунте на многие годы, если не на десятилетия, задерживается защемленный газ. Это имеет большое значение, в частности при сейсмическом микрорайонировании. На обводненных грунтах сейсмическая сальность выше. Защемленный воздух поднимает ее дополнительно, так как снижает скорость прохождения сейсмических волн.
Итак, грунт состоит из твердой, жидкой и газообразной компонент. 3 каждой из трех компонент чаше в малом и незначительном, а иногда и в существенном количестве содержатся микроорганизмы. Из всех составляющих грунта наиболее стабильной является твердая компонента. Жидкость (вода) при отрицательных температурах переходит в твердое состояние (лед), может истекать, испаряться. Газ при перемене условий растворяется, вытесняется жидкостью или другими газами. Очевидно, что свойства грунтов -
зависят от состава, состояния и взаимодействия слагающих его компонент.
Воспользуйтесь поиском по сайту: