Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Дозовые эффекты





АдминистрированиеДизайнМенеджментМаркетингНаучпоп

 

amartology 21 мая 2019 в 11: 12

Популярные заблуждения про радиационную стойкость микросхем

СхемотехникаПроизводство и разработка электроникиНаучно-популярноеКосмонавтикаЭлектроника для начинающих

Примерно в каждой второй теме на Хабре, касающейся космонавтики или электроники, всплывает тема радиационной стойкости. Через новости об отечественной космонавтике красной нитью проходит тематика импортозамещения радстойкой элементной базы, но в то же самое время Элон Маск использует дешевые обычные чипы и гордится этим. А изральтяне в «Берешите» использовали радстойкий процессор и тоже гордятся этим. Да и в принципе микроэлектронная отрасль в России живет по большей части за счет госзаказа с соответствующими требованиями. Наблюдение за регулярными спорами насчет того, как надо правильно строить спутники, показывает, что подготовка участников обычно невысока, а их аргументация отягощена стереотипами, случайно услышанными вырванными из контекста фактами и знаниями, устаревшими много лет назад. Я подумал, что читать это больше нет сил, поэтому, дорогие аналитики, устраивайтесь поудобнее на своих диванах, и я начну небольшой (на самом деле большой) рассказ о самых популярных заблуждениях на тему того, что такое радиационная стойкость интегральных микросхем.


Самые популярные тезисы относительно радиационной стойкости, используемые в околокосмических спорах, выглядят примерно так:


  1. Радстойкие микросхемы не нужны. Кубсаты прекрасно летают на обычных, на МКС стоят обычные ноутбуки Lenovo, в Dragon стоят обычные микросхемы, да даже NASA в Orion поставило обычные микросхемы!
  2. На спутники вполне можно ставить очень старые микросхемы, вплоть до «рассыпухи», никакая серьезная производительность там не нужна. Зато без радстойкости никуда, поэтому и летают на старье.
  3. Тезис, дополняющий предыдущий: радстойкие микросхемы в принципе нельзя сделать на низких проектных нормах, поэтому и применение проверенных временем компонентов не просто оправдано, но и необходимо.
  4. Для того, чтобы микросхема была радстойкой, необходимо и достаточно сделать ее по технологии «кремний на изоляторе» или «кремний на сапфире».
  5. Все «военные» микросхемы — радстойкие, а все радстойкие — «военные».


Как видите, некоторые из этих тезисов прямо противоречат друг другу — что регулярно и служит предметом спора или причиной для далеко идущих неверных выводов.

Начать разговор нужно с важного дисклеймера: радиационная стойкость не является центром мира и единственным качеством, которым должна обладать подходящая для использования в космосе или другой агрессивной среде микросхема. Радиационная стойкость — это лишь одно требование из длинного ряда, включающего в себя надежность, расширенный температурный диапазон, устойчивость к электростатическому разряду, вибростойкость — и достоверное подтверждение всех вышеперечисленных параметров, то есть длительную и дорогую сертификацию. Важно все, что может не позволить чипу проработать весь необходимый срок службы, причем большинство применений радстойких чипов предполагают невозможность ремонта или замены. С другой стороны, если по одному из параметров что-то не так, конструктор конечного изделия часто может найти способ обойти ограничение — поставить самую чувствительную к дозе радиации микросхему за толстую стенку, мониторить ток потребления уязвимого к тиристорному эффекту чипа и сбрасывать его питание при необходимости, или термостатировать чип с узким температурным диапазоном. А может не найти, и единственным способом решить поставленную задачу будет заказ новой радстойкой ASIC.

Также полезно помнить, что разработчики систем специального назначения — такие же люди, как и любые другие разработчики. Многие из них тоже любят писать ко вчерашнему дедлайну наполненный костылями код и использовать железо помощнее, чтобы он точно на нем заработал; некоторые и Ардуино бы использовали, если б оно было соответствующим образом сертифицировано. И, разумеется, люди, которые ставят задачи разработчикам систем специального назначения и разработчикам микросхем для них, редко стесняются в требованиях, и к надёжности, и к производительности, и к радстойкости. Поэтому современные проектные нормы на спутниках еще как нужны — хочется и большие объемы DRAM, и многоядерные процессоры, и самые современные ПЛИС. Я уже упомянул выше о том, что последствия плохой радиационной стойкости и других потенциальных проблем можно по крайней мере частично обойти, поэтому от применения всего этого великолепия разработчиков в большей степени удерживает ничего отсутствие данных о том, что именно надо обходить, чем коммерческий статус чипов.


Радиационные эффекты


Понятия «радиационная стойкость» и «радиационностойкая микросхема» — это грандиозные упрощения. На самом деле существует много разных источников ионизирующего излучения, и они могут влиять на функционирование электронных приборов по-разному. Соответственно, для разных применений необходима стойкость к разным наборам воздействующих факторов и разным уровням воздействия, так что «стойкая» микросхема, предназначенная для работы на низкой околоземной орбите совершенно не обязана нормально работать при разборе завалов в Чернобыле.

Ионизирующее излучение называется ионизирующим, потому что выделение в объеме вещества энергии при торможении прилетающих частиц ионизирует вещество. У каждого материала своя энергия, необходимая для ионизации и создания электронно-дырочной пары. Для кремния это 3. 6 эВ, для его оксида — 17 эВ, для арсенида галлия — 4. 8 эВ. Также прилетевшая частица может не ионизировать атом, а “сдвинуть” его с правильного места в кристаллической решетке (в кремнии для этого нужно передать атому 21 эВ). Созданные в веществе электронно-дырочные пары могут по-разному влиять на электрические и физические свойства и на поведение электрической схемы. Радиационные эффекты можно разделить на четыре большие группы: эффекты полной поглощенной дозы, эффекты мощности дозы, эффекты, вызванные попаданием одиночных частиц, и эффекты смещения. Это разделение — до некоторой степени условность: например, облучение потоком тяжелых ионов, вызывающих одиночные эффекты, приводит и к набору полной поглощенной дозы.

Дозовые эффекты

Полная поглощенная доза излучения измеряется в радах, с указанием вещества, поглощающего излучение. 1 рад = 0. 01 Дж/кг, то есть количество энергии, выделившееся в единице массы вещества. Реже используется единица измерения Грэй, равная 100 рад (или 1 Дж/кг). При этом важно понимать, что поглощенная доза в разных веществах будет различаться для одного и того же количества ионизирующих частиц, выпущенных источником радиации (это экспозиционная доза). В случае с кремниевыми микросхемами нужный материал — это оксид кремния, потому что воздействие на него, а не на кремний, в основном влияет на электрические характеристики схемы, так как подвижность дырок в SiO2 при нормальной температуре настолько мала, что они накапливаются в оксиде, создавая встроенный положительный заряд. Типичные уровни дозовой стойкости коммерческих микросхем лежат в диапазоне 5-100 крад(Si), востребованные покупателями уровни радиационной стойкости начинаются на 30 крад(Si) и заканчиваются где-то в районе 1 Град(Si), в зависимости от назначения микросхем. Смертельная доза для человека — около 6 Грэй.

Рисунок 2. Примеры расчетов набора полной поглощенной дозы за 10 лет на различных круговых орбитах за защитой в 1г/см^2. Источник — Н. В. Кузнецов, «Радиационная опасность на околоземных орбитах и межпланетных траекториях космических аппаратов».

Эффекты воздействия полной дозы связаны с накоплением этого положительного заряда в диэлектриках и проявляются в КМОП-схемах несколькими основными путями:


  1. Сдвиг порогового напряжения транзисторов, возникающий из-за накопления положительного заряда в подзатворном диэлектрике и изменения электрического поля в канале транзистора. У n-канальных транзисторов порог обычно уменьшается (но зависимость может быть немонотонной), а у p-канальных увеличивается, причем величина сдвига имеет корреляцию с толщиной подзатворного оксида, то есть с проектными нормами. Пороги транзисторов в схемах с грубыми проектными нормами могут измениться настолько, чтобы послужить причиной функционального отказа (n-канальные транзисторы перестают закрываться, p-канальные — открываться); в субмикронных технологиях этот эффект менее важен, но в аналоговых схемах способен доставить много головной боли.
  2. Возникновение неуправляемого тока утечки. Он может течь из истока транзистора в его же сток или в соседний транзистор. Причина утечек — накопление положительного заряда, но только не в подзатворном диэлектрике, а в толстом изолирующем. Фактически, параллельно основному транзистору формируется паразитный транзистор, напряжение на затворе которого управляется дозой радиации. Проявление этого эффекта определяется особенностями геометрии перехода от подзатворного диэлектрика к изолирующему, то есть в намного большей мере зависит от конкретной технологии, чем от проектных норм.
  3. Уменьшение подвижности носителей заряда из-за накопления дефектов, на которых рассеиваются носители заряда. Влияние этого фактора на субмикронные цифровые схемы на кремнии невелико, но он более важен для силовых транзисторов, в том числе на сложных полупроводниках (нитриде галлия и карбиде кремния).
  4. Увеличение 1/f шумов, вызванное паразитными краевыми транзисторами. Оно важно для аналоговых и радиочастотных схем. Значение этого эффекта растет с уменьшением проектных норм, когда влияние остальных дозовых эффектов уменьшается.


В биполярных схемах основной дозовый эффект — падение коэффициента усиления, вызванное ростом базового тока из-за утечки из эмиттера в базу по границе кремния и пассивирующего оксида. Другой специфический для биполярных транзисторов дозовый эффект состоит в том, что они могут (не обязательно) реагировать не только на уровень набранной дозы, но и на скорость ее набора — чем медленнее набирается доза, тем хуже стойкость. Этот эффект называется ELDRS (Enhanced Low Dose Rate Sensitivity) и он сильно усложняет и удорожает тестирование, причем часто не только биполярных, но и КМОП-схем — потому что в них тоже иногда бывают биполярные транзисторы и потому что проще заставить всех тестироваться единообразно, чем разбираться, где ELDRS может быть, а где нет.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...