Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Другие орбиты. Военные микросхемы. Мирный атом и другие




Другие орбиты

Однако, спутники летают не только на низкой околоземной орбите. В качестве примера других требований давайте рассмотрим единственный способ обеспечить стабильную связь в окрестностях Северного полюса — а это стратегически важный для России район — орбиту “Молния”, названную так в честь первого запущенного на нее аппарата.

Рисунок 5. Орбита “Молния”.

Главная особенность этой орбиты состоит в том, что из-за большой вытянутости (минимальная высота — около 500 км над поверхностью Земли, максимальная — до 40 000 км, период 12 часов) аппарат четыре раза в сутки пересекает радиационные пояса. Срок активного существования самых первых спутников “Молния” составлял всего около полугода — в первую очередь, из-за вызванного радиацией падения мощности солнечных панелей, которым нужно было питать мощный (орбита-то высокая) радиопередатчик.

На геостационарной орбите или на орбитах навигационных аппаратов рисунок 2 обещает нам дозу в несколько сотен крад(Si) — а дозовая стойкость коммерческих микросхем может легко составлять 5-10 крад(Si), то есть ни о каких 10-15 годах активного существования таких чипов на орбите речи быть не может. Точнее, может, но для этого понадобится гораздо более толстая защита — или защита из чего-то более плотного, чем алюминий. Впрочем, тут мы погружаемся в дивный мир конструирования космических аппаратов, так что давайте ограничимся фразой о том, что доставка каждого килограмма на орбиту дорога, а идея спрятать наиболее уязвимую электронику поглубже внутрь корпуса, экранировав ее с помощью других компонентов — неплоха, но полностью проблем не решит.

Военные микросхемы

Занимаясь вопросом развенчания мифов о радстойкости, необходимо обязательно сказать о том, что нельзя ставить знак равенства между «радстойкими», «космическими» и «военными» микросхемами. Не все военные микросхемы — радстойкие, и не все радстойкие — военные. Если мы обратимся к американскому военному стандарту Mil-Std-883 (к американскому, потому что его российский аналог в части радиации засекречен), то мы найдем в нем множество разных тестов на влияние окружающей среды — термоциклирование, влажность, воздух с морской солью и т. д. и т. п.

Радиации касаются следующие пункты:

1017. 2 Neutron irradiation
1019. 8 Ionizing radiation (total dose) test procedure
1020. 1 Dose rate induced latchup test procedure
1021. 3 Dose rate upset testing of digital microcircuits
1023. 3 Dose rate response of linear microcircuits

Полная доза и мощность дозы. Одиночные эффекты? Никак нет. В техническом задании на микросхему могут фигурировать требования на стойкость к одиночным сбоям и/или тиристорному эффекту, но эти требования не стандартизованы и каждый раз определяются заново, исходя из потребностей конкретных заказчиков каждого чипа. Получается, что статус «military» не является гарантией возможности запустить микросхему в космос? Да, это так. Примером может служить судьба печально знаменитого «Фобос-грунта», гибель которого была вызвана, согласно официальной версии (очень сложно доказуемой, зато очень удобной), попаданием тяжелой заряженной частицы в американскую микросхему памяти класса «military», которая не была стойкой к одиночным сбоям.

Мирный атом и другие

Важность радиационной стойкости не ограничивается только космическими и военными применениями. Естественный радиационный фон на уровне моря во много раз ниже даже того, что происходит на низкой орбите, но атмосфера Земли не только служит последним щитом на пути космического излучения, но и рождает вторичные частицы при взаимодействии с ним. Вторичные частицы — в основном нейтроны. Появляясь в верхних слоях атмосферы, они обычно не долетают до поверхности, однако на высотах полетов гражданских авиалайнеров и доза излучения набирается значительная, и по одиночным сбоям собрана весьма внушительная статистика. В медицине давным-давно применяется рентгеновское излучение, а радиотерапия — один из важных способов борьбы со злокачественными опухолями, и в подобных установках тоже нужна электроника.

И, конечно же, не стоит забывать, что вся возня с нежно любимым всеми электронщиками бессвинцовым припоем была затеяна во многом из-за того, что свинец и некоторые другие материалы, применяемые при производстве микросхем, содержат примеси более тяжелых элементов, в частности урана, и их применение приводит к генерации небольшого, но все же хорошо измеримого потока альфа-частиц — прямо около уязвимого кремния. В случае c BGA-корпусами или 3D-сборками — по всей поверхности уязвимого кремния.

Рисунок 6. Иллюстрация шарика припоя как источника альфа-частиц.

Хорошая новость — у альфа-частиц достаточно маленькая глубина пробега в кремнии (от единиц до десятков микрон, в зависимости от энергии), и многослойная металлизация помогает уменьшить их влияние. Плохая новость — на низких проектных нормах все альфа-частицы, которые все-таки долетают до кремния, вызывают сбои, и не только одиночные, но и множественные (об этом подробнее чуть ниже). Например, в прошлом году TSMC опубликовали на 2018 IEEE International Reliability Physics Symposium статью об измерении количества сбоев от загрязнения альфа-частицами в памяти по проектным нормам 7 нм, то есть эта проблема продолжает существовать и требовать каких-то действий и в мире, где все перешли на бессвинцовый припой.

Еще одно применение радиационностойких микросхем, о котором хотелось бы сказать пару слов — это физика высоких энергий и атомная энергетика. В активных зонах адронных коллайдеров и атомных реакторов (а также в технике, предназначенной для ликвидации радиационных катастроф) тоже нужна электроника, причем крайне желательно такая, которая не нуждается в замене и ремонте на протяжении значительного времени. Требования по полной поглощенной дозе для таких применений — десятки и даже сотни Мегарад(Si), то есть на три порядка больше, чем в обычных космических применениях. Дополнительно усложняет ситуацию то, что такая стойкость требуется не от цифровых схем, а от силовых и аналоговых — схем управления электроприводами и первичной обработки показаний многоканальных сенсоров. И если с обеспечением дозовой стойкости цифровых схем все более-понятно даже при больших дозах, то в случае с аналогом разработка электрической схемы имеет принципиальное значение, а сама получившаяся схема составляет даже большее ноу-хау, чем это обычно бывает в аналоговом дизайне.

Рисунок 7. Обычная и радстойкая схема источника опорного напряжения. Из статьи Y. Cao et. al., «A 4. 5 MGy TID-Tolerant CMOS Bandgap Reference Circuit Using a Dynamic Base Leakage Compensation Technique», IEEE TNS, Vol. 60, N. 4, 2013

Проиллюстрирую масштаб задач, стоящих перед разработчиками чипов для атомной энергетики, своим любимым примером. Источник опорного напряжения (ИОН), равного ширине запрещенной зоны кремния (bandgap voltage reference) — относительно простая и хорошо известная схема. При воздействии радиации меняются параметры биполярных транзисторов, используемых в качестве диодов (падает коэффициент усиления из-за появления утечки эмиттер-база). В результате опорное напряжение обычной схемы ИОН, определяющее точность всех измерений, может сместиться, скажем, на 15-20%, что соответствует эффективной разрядности АЦП в два-три бита. У схемы справа опорное напряжение изменяется в пределах 1% (что больше 7 бит) при дозе ионизирующего излучения в 4. 5 МГр. Для того, чтобы добиться этого впечатляющего результата, схему потребовалось серьезно переработать, добавив целую россыпь обратных связей, компенсирующих дозовую утечку. В радстойком варианте примерно в четыре раза больше элементов, чем в обычном, и его энергопотребление в два раза больше. А самая плохая новость заключается в том, что для каждой новой схемы стратегию обеспечения радиационной стойкости и ее реализацию приходится разрабатывать отдельно. А ведь есть еще проблема защиты аналоговых схем от одиночных эффектов, решение которой тоже достаточно плохо формализуется.


Радиационная стойкость и проектные нормы


На сайте одной микроэлектронной фабрики довольно долго красовалось утверждение, что радиационной стойкости нельзя добиться на проектных нормах ниже 600 нм, потому что иначе «заряженные частицы прошивают кремний». По удивительному совпадению, минимальными проектными нормами, доступными той фабрике, были как раз 600 нм. А один высокопоставленный сотрудник другой фабрики сообщал в интервью, что сделать микросхемы для космоса на проектных нормах ниже 90 нм «технологически невозможно». И снова так совпало, что технологически невозможно сделать что-то на нормах ниже 90 нм на этой конкретной фабрике. Маркетинговые причины этих ситуаций и сиюминутная выгода от них вполне понятны, но в долгосрочной перспективе подобные фразы, сказанные на широкую аудиторию, как мне кажется, приносят больше вреда, чем пользы.

Также регулярно встречаются не привязанные ни к какому маркетингу рассуждения о том, что микросхемы, выполненные по проектным нормам грубее некоторого предела, иммунны к разрушающим одиночным сбоям (в частности, к тиристорному эффекту), а значит многолетнее использование давно устаревших технологий не только оправдано, но и необходимо.
Или наоборот, фразы о том, что к тиристорному эффекту иммунны микросхемы с проектными нормами ниже 250 нм, потому что у них настолько низкие рабочие напряжения, что тиристор просто не может открыться. Или есть мнения, что на самом деле проблема не в проектных нормах, а в том, что КМОП-технология принципиально уязвима к радиации (что подтверждается сделанными заявителем в семидесятых испытаниями), а старые радстойкие чипы — биполярные/КНС/GaAs. А раз КМОП-технология принципиально плоха, но все современные чипы делаются на ней — это значит, что современные чипы нерадстойкие по определению, и единственный верный путь для космонавтики — вложение денег в доведение до ума давно заброшенного арсенида галлия (заодно и на коммерческом рынке Intel победим) или возврат к проверенной временем дискретной логике. А еще лучше — к лампам.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...