Явления на поверхности полупроводника
В результате взаимодействия полупроводника и окружающей среды на поверхности кристалла образуются различные соединения, отличающиеся по своим свойствам от основного материала. Кроме того, обработка кристалла приводит к дефектам кристаллической решетки на поверхности полупроводника. По этим причинам возникают поверхностные состояния, повышающие вероятность появления свободных электронов или незаполненных ковалентных связей. Энергетические уровни поверхностных состояний могут располагаться в запрещенной энергетической зоне и соответствовать донорным и акцепторным примесям. Поверхностные состояния меняют концентрацию носителей заряда, и в приповерхностном слое полупроводника возникает объемный заряд, приводящий к изменению уровня Ферми. Поскольку в состоянии равновесия уровень Ферми во всем кристалле полупроводника одинаков, поверхностные состояния вызывают искривление энергетических уровней в приповерхностном слое полупроводника. В зависимости от типа полупроводника и характера поверхностных состояний может происходить обеднение или обогащение поверхности кристалла носителями заряда. Обеднение возникает в том случае, если поверхностный заряд совпадает по знаку с основными носителями заряда. На рис. 1.20 показано образование обедненного слоя на поверхности полупроводника n-типа при такой плотности поверхностных состояний, что уровни Win и Wфn не пересекаются. Повышение плотности пространственного заряда может привести к пересечению уровня Ферми с уровнем середины запрещенной зоны (рис. 1.21), что соответствует изменению типа электропроводности у поверхности полупроводника. Это явление называют инверсией типа электропроводности, а слой, в котором. оно наблюдается, - инверсным слоем.
Если знаки поверхностного заряда и основных носителей противоположны, происходит обогащение приповерхностной области основными носителями зарядов. Такую область называют обогащенным слоем (рис. 1.22). Электропроводность приповерхностного слоя полупроводника может изменяться под действием электрического поля, возникающего за счет напряжения, прикладываемого к металлу и полупроводнику, разделенным диэлектриком. Если предположить, что до включения напряжения поверхностные состояния на границе полупроводника и диэлектрика отсутствуют, то электропроводности приповерхностного слоя и объема полупроводника будут одинаковыми. При включении напряжения между металлом и полупроводником возникает электрическое поле, и на поверхности металла и в приповерхностном слое полупроводника, как на пластинах конденсатора, накапливаются заряды. Например, если полупроводник электронный и к нему прикладывается отрицательное напряжение, то под действием электрического поля у
поверхности увеличиваются концентрация электронов и электропроводность приповерхностного слоя полупроводника (см. рис. 1.22). При изменении полярности напряжения концентрация электронов в приповерхностном слое уменьшается, а дырок - увеличивается. В связи с этим электропроводность приконтактной области уменьшается, стремясь к собственной. Увеличение напряжения приводит к тому, что концентрация дырок становится выше концентрации электронов и происходит изменение (инверсия) типа электропроводности слоя. При этом электропроводность приповерхностного слоя увеличивается. Зависимость электропроводности приповерхностного слоя полупроводника n-типа от напряжения показана на рис. 1.23. Это явление принято называть эффектом поля.
ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ Классификация
Классификация полупроводниковых диодов производится по следующим признакам: - методу изготовления перехода: сплавные, диффузионные, планарные, точечные, диоды Шоттки и др.; - материалу: германиевые, кремниевые, арсенидо-галлиевые и др.; - физическим процессам, на использовании которых основана работа диода: туннельные, лавинно-пролетные, фотодиоды, светодиоды. диоды Ганна и др.; - назначению: выпрямительные, универсальные, импульсные, стабилитроны, детекторные, параметрические, смесительные, СВЧ-диоды и др. Некоторые из указанных типов диодов по назначению будут рассмотрены в настоящей главе, а другие - в соответствующих разделах учебного пособия.
Выпрямительные диоды
Выпрямительными обычно называют диоды, предназначенные для преобразования переменного напряжения промышленной частоты (50 или 400 Гц) в постоянное. Основой диода является обычный p-n переход. В практических случаях p-n переход диода имеет достаточную площадь для того, чтобы обеспечить большой прямой ток. Для получения больших обратных (пробивных) напряжений диод обычно выполняется из высокоомного материала. Основными параметрами, характеризующими выпрямительные диоды, являются (рисунок 2.1): - максимальный прямой ток Iпр max; - падение напряжения на диоде при заданном значении прямого тока Iпр (Uпр» 0.3...0,7 В для германиевых диодов и Uпр» 0,8...1,2 В -для кремниевых); - максимально допустимое постоянное обратное напряжение диода Uобр max; - обратный ток Iобр при заданном обратном напряжении Uобр (значение обратного тока германиевых диодов на два -три порядка больше, чем у кремниевых); - барьерная емкость диода при подаче на него обратного напряжения некоторой величины; - диапазон частот, в котором возможна работа диода без существенного снижения выпрямленного тока;
- рабочий диапазон температур (германиевые диоды работают в диапазоне -60...+70°С, кремниевые - в диапазоне -60...+150°С, что объясняется малыми обратными токами кремниевых диодов). Рисунок 2.1 К определению параметров выпрямительных диодов.
Выпрямительные диоды обычно подразделяются на диоды малой, средней и большой мощности, рассчитанные на выпрямленный ток до 0.3, от 0,3 до 10 и свыше 10 А соответственно. Для работы на высоких напряжениях (до 1500 В) предназначены выпрямительные столбы, представляющие собой последовательно соединенные p-n переходы, конструктивно объединенные в одном корпусе. Выпускаются также выпрямительные матрицы и блоки, имеющие в одном корпусе по четыре или восемь диодов, соединенные по мостовой схеме выпрямителя и имеющие Iпр max до 1 А и Uo6p max до 600 В. При протекании больших прямых токов Iпр и определенном падении напряжения на диоде Uпp B нем выделяется большая мощность. Для отвода данной мощности диод должен иметь большие размеры p-n перехода, корпуса и выводов. Для улучшения теплоотвода используются радиаторы или различные способы принудительного охлаждения (воздушное или даже водяное). Среди выпрямительных диодов следует выделить особо диод с барьером Шоттки. Этот диод характеризуется высоким быстродействием и малым падением напряжения (Uпp < 0,6 В). К недостаткам диода следует отнести малое пробивное напряжение и большие обратные токи.
Стабилитроны и стабисторы
Стабилитроном называется полупроводниковый диод, на обратной ветви ВАХ которого имеется участок с сильной зависимостью тока от напряжения (рисунок 2.2), т.е. с большим значением крутизны DI/DU (DI= Icт max - Iст min). Если такой участок соответствует прямой ветви ВАХ, то прибор называется стабистором. Стабилитроны используются для создания стабилизаторов напряжения. Напряжение стабилизации Uст равно напряжению электрического (лавинного) пробоя p-n перехода при некотором заданном токе стабилизации Iст (рисунок). Стабилизирующие свойства характеризуются дифференциальным сопротивлением стабилитрона rд = DU/DI, которое должно быть возможно меньше.
К параметрам стабилитрона относятся: напряжение стабилизации Ucт, минимальный и максимальный токи стабилизации Iст min Iст max. Промышленностью выпускаются стабилитроны с параметрами: Ucт от 1,5 до 180 В, токи стабилизации от 0,5 мА до 1,4 А. Выпускаются также двуханодные стабилитроны, служащие для стабилизации разнополярных напряжений и представляющие собой встречно включенные p-n переходы.
Рисунок 2.2 К определению параметров стабилитронов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|