Семейство железа. Общая характеристика, свойства простых веществ и их соединений. Комплексные соединения. Гемоглобин. Железо и кобальт как биогенные элементы.
Металлы семейства железа имеют полиморфные видоизменения, от которых зависит структура или свойства сплавов, имеющие значение в машиностроении. Механические свойства железа, кобальта и никеля сильно зависят от примесей, но в чистом виде эти металлы пластичны и прочны. Восстановительная активность понижается от железа к кобальту и никелю. При высокой температуре галогены окисляют железо до тригалогенидов (например, FeCl3), а кобальт и никель – до дигалогенидов (CoCl2, NiCl2). Карбиды железа (Fe2C), кобальта (Co3C) и никеля (Ni3C) неустойчивы, но цементит (Fe3C) достаточно прочен и входит в состав многих сталей. Из разнообразных силицидов железа, кобальта и никеля наиболее устойчивы соединения типа Э3Si. Силициды, а также бориды железа, кобальта и никеля (с составом Э2B и ЭB) весьма тугоплавки (1000-1540 0С). Нитриды металлов семейства железа малоустойчивы, они образуют при азотировании – насыщении азотом поверхности стальных изделий, сообщающем им большую твердость, сопротивляемость истиранию, устойчивость к коррозии. Фосфиды железа, кобальта и никеля могут иметь состав Э3P, Э2Р, ЭР и ЭР2. Желе́зо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 26. Обозначается символом Fe. Один из самых распространённых в земной коре металлов (второе место после алюминия). Простое вещество железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро коррозирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.
В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре — 4,65 %. Химические свойства Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. Железо не растворяется в холодных концентрированных серной и азотной кислотах из-за пассивации поверхности металла прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом. С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа(II): Fe + 2HCl → FeCl2 + H2↑; Fe + H2SO4 → FeSO4 + H2↑. При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа(III): 2Fe + 6H2SO4 → Fe2(SO4)3 + 3SO2↑ + 6H2O. Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH)2. Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe(OH)2, основание Fe(OH)3, которое реагирует с кислотами: 2Fe(OH)3 + 3H2SO4 → Fe2(SO4)3 + 6H2O. Гидроксид железа(III) Fe(OH)3 проявляет слабо амфотерные свойства, он способен реагировать только с концентрированными растворами щелочей: Fe(OH)3 + 3КОН → K3[Fe(OH)6]. Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3. Соединения железа(III) в растворах восстанавливаются металлическим железом: Fe + 2FeCl3 → 3FeCl2. При хранении водных растворов солей железа(II) наблюдается окисление железа(II) до железа(III): 4FeCl2 + O2 + 2H2O → 4Fe(OH)Cl2. Из солей железа(II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа(II) (NH4)2Fe(SO4)2·6Н2O. Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 — железокалиевые квасцы, (NH4)Fe(SO4)2 — железоаммонийные квасцы и т. д.
При действии газообразного хлора или озона на щелочные растворы соединений железа(III) образуются соединения железа(VI) — ферраты, например, феррат(VI) калия K2FeO4. Имеются сообщения о получении под действием сильных окислителей соединений железа(VIII). Для обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с тиоцианат-ионами SCN−. При взаимодействии ионов Fe3+ с анионами SCN− образуется ярко-красный роданид железа Fe(SCN)3. Другим реактивом на ионы Fe3+ служит гексацианоферрат(II) калия K4[Fe(CN)6] (жёлтая кровяная соль). При взаимодействии ионов Fe3+ и [Fe(CN)6]4− выпадает ярко-синий осадок берлинской лазури: 4K4[Fe(CN)6] + 4Fe3+ → 4KFeIII[FeII(CN)6]↓ + 12K+. Реактивом на ионы Fe2+ в растворе может служить гексацианоферрат(III) калия K3[Fe(CN)6] (красная кровяная соль). При взаимодействии ионов Fe2+ и [Fe(CN)6]3− выпадает осадок турнбулевой сини: 3K3[Fe(CN)6] + 3Fe2+ → 3KFeII[FeIII(CN)6]↓ + 6K+. Интересно, что берлинская лазурь и турнбулева синь — две формы одного и того же вещества, так как в растворе устанавливается равновесие: KFeIII[FeII(CN)6] ↔ KFeII[FeIII(CN)6]. Ко́бальт — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 27. Обозначается символом Co. Простое вещество кобальт — серебристо-белый, слегка желтоватый металл с розоватым или синеватым отливом. Химические свойства Оксиды · На воздухе кобальт окисляется при температуре выше 300 °C. · Устойчивый при комнатной температуре оксид кобальта представляет собой сложный оксид Co3O4, имеющий структуру шпинели, в кристаллической структуре которого одна часть узлов занята ионами Co2+, а другая — ионами Co3+; разлагается с образованием CoO выше 900 °C. · При высоких температурах можно получить α-форму или β-форму оксида CoO. · Все оксиды кобальта восстанавливаются водородом. Со3О4 + 4Н2 → 3Со + 4Н2О. · Оксид кобальта (III) можно получить, прокаливая соединения кобальта (II), например: 2Со(ОН)2 + O2 → Co2O3 + Н2O. Гемоглоби́н (от др.-греч. αἷμα — кровь и лат. globus — шар) — сложный железосодержащий белок животных и человека, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях.
Главная функция гемоглобина состоит в переносе дыхательных газов. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Током крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается из связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких. Монооксид углерода (CO) связывается с гемоглобином крови прочнее, чем кислород, образуя карбоксигемоглобин (HbCO). Некоторые процессы приводят к окислению иона железа в геме до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от мета… и гемоглобин, иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода. Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в легких.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|