З-н Био-СавараЛапласа ( книга физика стр. 207).
Био, Савар и Лаплас установили закон, который позволяет вычислить магнитную ин дукцию поля, созданного элементом тока Id на расстоянии от него: dB = , (5) т.е. индукция магнитного поля, создаваемого элементом тока Id точке А, (см. рис. 3), на расстоянии r от него, пропорциональна величине элемента тока и синусу угла a, равного углу между направлениями элемента тока Id и , а также обратно пропорциональна квадрату расстояния между ними; Гн / м - магнитная постоянная. Закон Био - Савара - Лапласа в векторной форме имеет вид: d = . (6) Закон Био - Савара - Лапласа позволяет вычислить магнитную индукцию поля любых систем токов, используя принцип суперпозиции магнитных поля = . (7) Применим закон Био - Савара - Лапласа и принцип суперпозиции (7) к расчету магнит ных полей следующих токов: ЗАКОН АМПЕРА (ФИЗИКА СТР. 209). МАГНИТОСТАТИКА В ВАКУУМЕ. Магнитоста́тика — раздел классической электродинамики, изучающий взаимодействие постоянных токов посредством создаваемого ими постоянного магнитного поля и способы расчета магнитного поля в этом случае. Под случаем магнитостатики или приближением магнитостатики понимают выполнение этих условий (постоянства токов и полей — или достаточно медленное их изменение со временем), чтобы можно было пользоваться методами магнитостатики в качестве практически точных или хотя бы приближенных. Магнитостатика вместе сэлектростатикой представляют собой частный случай (или приближение) классической электродинамики; их можно использовать совместно и независимо (расчет электрического и магнитного полей в этом случае не имеет взаимозависимостей — в отличие от общего электродинамического случая).
Все основные уравнения магнитостатики линейны[1] (как и классической электродинамики вообще, частным случаем которой магнитостатика является). Это подразумевает важную роль в магнитостатике (тоже как и во всей электродинамике) принципа суперпозиции. · Принцип суперпозиции для магнитостатики может быть сформулирован так: Магнитное поле, создаваемое несколькими токами, есть векторная сумма полей, которые бы создавались каждым из этих токов по отдельности. Этот принцип одинаково формулируется и в принципе одинаково используется для вектора магнитной индукции и для векторного потенциала и применяется при расчетах повсеместно. Особенно очевидным и прямым образом это проявляется, когда при применении закона Био — Савара (см. ниже) для расчета магнитного поля производится суммирование (интегрирование) бесконечно малых вкладов , создаваемых каждым бесконечно малым элементом тока, текущих в разных точках пространства (точно так же и при применении варианта этого закона для векторного потенциала). Основные уравнения, используемые в магнитостатике[2]: · Закон Био — Савара — Лапласа (величина магнитного поля, генерируемого в данной точке элементом тока) · Теорема о циркуляции магнитного поля · она же в дифференциальной форме: · Выражение для силы Лоренца (силы, с которой на движущуюся заряженную частицу действует магнитное поле) · Выражение для силы Ампера (силы, с которой на элемент тока действует магнитное поле) (уравнения выше записаны в гауссовой системе единиц); в других системах единиц эти формулы отличаются только постоянными коэффициентами, например: в системе СИ [показать] Здесь — вектор магнитной индукции, I — сила тока в проводнике (а в теореме о циркуляции — суммарный ток через поверхность), — элемент проводника (в теореме о циркуляции — элемент контура интегрирования), — радиус-вектор, проведённый из элемента тока в точку, в которой определяется магнитное поле, — плотность тока, —величина заряда и скорость заряженной частицы.
· Для расчёта магнитного поля в магнитостатике можно пользоваться (и часто это весьма удобно) понятием магнитного заряда, делающим аналогию магнитостатики с электростатикой более детальной и позволяющим применять в магнитостатике формулы, аналогичные формулам электростатики — но не для электрического, а для магнитного поля. Обычно (за исключением случая теоретического рассмотрения гипотетических магнитных монополей) подразумевается лишь чисто формальное использование, так как в реальности магнитные заряды не обнаружены. Такое формальное использование (фиктивных) магнитных зарядов возможно благодаря теореме эквивалентности поля магнитных зарядов и поля постоянных электрических токов. Фиктивные магнитные заряды можно использовать при решении разных задач как в качестве источников магнитного поля (например, магнитом или катушкой), так и для определения действия внешних магнитных полей на магнитное тело (магнит, катушку). Уравнения магнитостатики в среде Уравнения «для вакуума», приведенные в начале статьи, являются наиболее фундаментальными и простыми (в принципе) уравнениями магнитостатики. Однако если речь идет о вычислении магнитного поля в среде магнетика, более удобными для практических вычислений, а до некоторой степени и в теоретическом плане, являются менее фундаментальные, однако хорошо приспособленные к этой ситуации, так называемые уравнения для среды (или в среде). · Говоря о терминологии, следует заметить, что термины уравнения для вакуума и уравнения для среды можно считать в заметной мере условными[3], однако эта терминология имеет довольно ясное оправдание (см. предыдущее примечание); кроме того, она достаточно устоявшаяся и поэтому не приводит к путанице. Итак, уравнения для среды используются в магнитостатике для того, чтобы исследовать магнитное поле в случае, когда всё пространство или некоторые его области заполнено магнитной средой (магнетиками). Подразумевается обычно, что среда рассматривается макроскопически (то есть микроскопические поля — поля на атомных масштабах — усредняются, атомные, молекулярные токи и магнитные моменты также рассматриваются только в их совокупности). На микроскопическом уровне действуют[4] фундаментальные уравнения для вакуума, описанные в статье выше, поэтому в контексте исследования в среде уравнения для ваккма называются также микроскопическими уравнениями в противоположность самим макроскопическим уравнениям для поля в среде.
Формулы для действия поля на движущийся заряд (силы Лоренца) или на ток (силы Ампера) для случая магнитных сред сохраняются полностью неизменными, такими же, как и для вакуума. Что касается остальных уравнений, они претерпевают для среды определенные изменения по сравнению с вакуумом (имеются в виду, конечно, макроскопические уравнения, микроскопические остаются теми же, что и для вакуума). В принципе, можно вводить эти изменения по-разному[5], но весьма общий, традиционный и удобный подход, являющийся общепринятым и стандартным[6]: записать уравнения с использованием вспомогательной физической величины напряженность магнитного поля , специально вводимой в этом случае. , где — в системе СИ, — в системе СГС. · Здесь — вектор намагниченности, характеризующий магнитную поляризацию среды. Смысл её введения состоит в том, что с её помощью можно переписать все основные уравнения в виде, очень похожем на тот, что имеют фундаментальные уравнения (для вакуума), а всё касающееся реальной среды поместить по возможности в отдельное уравнение, что позволяет лучше логически структурировать задачу. В сравнительно простых, но важных случаях, к которым относится и практически вся магнитостатика, это удается сделать настолько хорошо, что, в принципе, действительно всё, касающееся конкретной среды, оказывается полностью спрятано в единственную зависимость — зависимость намагниченности от намагничивающего поля (то есть, в принципе, в одну-единственную формулу)[7]вида (для случая ферромагнетиков, если требовать точности описания, несколько сложнее, но ненамного).
При этом, что также ценно, уравнения для вакуума становятся частным случаем уравнений для среды (случаем среды с всегда нулевой намагниченностью). · В простейшем, но практически важном случае линейного[8] отклика среды на намагничивающее поле, просто пропорционально , а если среда изотропна по своим магнитным свойствам, то это сводится просто к умножению на число:
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|