Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Определите отношения понятий, проиллюстрируйте «кругами Л. Эйлера»

Могут ли быть одновременно истинными следующие пары суждений?

 

1.5.1. Все млекопитающие дышат легкими. Не все млекопитающие дышат легкими. Ответ: данная пара суждений не может быть одновременно истинными, так как данные суждения взаимоисключающие (высказывание и его отрицание вместе истинными быть не могут), суждение «все млекопитающие дышат легкими» истинное, а суждение «не все млекопитающие дышат легкими» ложное.

1.5.2. Все дома в Петербурге каменные. без воды. Некоторые рыбы могут жить без воды. Ответ: данная пара суждений не может быть одновременно истинными, так как данные суждения взаимоисключающие (высказывание и его отрицание вместе истинными быть не могут), суждение «ни одна рыба не может жить без воды» истинное, а суждение «некоторые рыбы могут жить без воды» ложное.

1.5.4. Сегодня – понедельник. Сегодня – не понедельник. Ответ: данная пара суждений не может быть одновременно истинными (высказывание и его отрицание вместе истинными быть не могут), так как данные суждения взаимоисключающие, суждение «сегодня – понедельник» и суждение «сегодня – не понедельник» могут быть и истинным, и ложным (зависит от дня недели).

1.5.5. Петр знает английский язык. Петр не знает английского языка. Ответ: данная пара суждений не может быть одновременно истинными, так как данные суждения взаимоисключающие (высказывание и его отрицание вместе истинными быть не могут), суждение «Петр знает английский язык» и суждение «Петр не знает английского языка» могут быть и истинным, и ложным (зависит от уровня знаний Петра английского языка).

1.5.6. Все люди грамотные. Ни один человек не является грамотным. Ответ: данная пара суждений не может быть одновременно истинными, так как данные суждения взаимоисключающие истинными (высказывание и его отрицание вместе истинными быть не могут), суждение «сегодня – понедельник» и суждение «сегодня – не понедельник» являются ложным (нельзя сказать, что все люди грамотные, но также нельзя сказать, что ни один человек не является грамотным).

1.5.7. Электрон есть частица. Электрон есть волна. Ответ: данная пара суждений не может быть одновременно истинными (высказывание и его отрицание вместе истинными быть не могут), так как данные суждения взаимоисключающие (высказывание и его отрицание вместе истинными быть не могут), суждение «электрон есть частица» истинное, а суждение «электрон есть волна» ложное.

Определите отношения понятий, проиллюстрируйте «кругами Л. Эйлера»

 

2.5.1. организм, больной, здоровый, нездоровый

Ответ: в случае несовместимости понятий, в частности, противоречащих друг другу понятий «больной, нездоровый» и «здоровый», мы будем иметь дело с отношением не между тремя, а между четырьмя понятиями. Третье понятие «организм» представляет собой “предметную область”, в рамках которой первые два понятия соотносятся друг с другом. Содержания понятий «больной, нездоровый» и «здоровый» различны по одному признаку. В одном из них нет того признака, который есть в другом. Значит, имеются признаки, входящие в содержание обоих понятий, и есть такие, которые входят в содержание только одного понятия. «Организм» - это общее (родовое) понятие, организм может быть здоровым и может быть больным (нездоровым). Понятие больной и нездоровый равнозначны. Понятие здоровый и больной (нездоровый) несовместимы.

2.5.2. набережные Невы, гранитные набережные Невы, не гранитные набережные Невы, Университетская набережная

Ответ: в случае несовместимости понятий, в частности, противоречащих друг другу понятий «гранитные набережные Невы» и «не гранитные набережные Невы», мы будем иметь дело с отношением не между двумя, а между тремя понятиями. Третье понятие «набережные Невы» представляет собой “предметную область”, в рамках которой первые два понятия соотносятся друг с другом. Содержания понятий «гранитные набережные Невы» и «не гранитные набережные Невы» различны по одному признаку. В одном из них нет того признака, который есть в другом. Значит, имеются признаки, входящие в содержание обоих понятий, и есть такие, которые входят в содержание только одного понятия. «Набережные Невы» это общее (родовое) понятие, набережные Невы могут быть гранитными и могут быть не гранитными. Понятие «гранитные набережные Невы» и «не гранитные набережные Невы» несовместимы. Понятие «Университетская набережная» может иметь или не имеет отношения с другими понятиями. Университетская набережная может быть гранитной и не гранитной, располагаться на набережной Нивы или не располагаться, «Набережные Невы» и «Университетская набережная» являются набережными, т.е частично совпадают.

2.5.3. мосты, разводные мосты, неразводные мосты, Поцелуев мост

Ответ: в случае несовместимости понятий, в частности, противоречащих друг другу понятий «разводные мосты» и «неразводные мосты», мы будем иметь дело с отношением не между двумя, а между тремя понятиями. Третье понятие «мосты» представляет собой “предметную область”, в рамках которой первые два понятия соотносятся друг с другом. Содержания понятий «разводные мосты» и «неразводные мосты» различны по одному признаку. В одном из них нет того признака, который есть в другом. Значит, имеются признаки, входящие в содержание обоих понятий, и есть такие, которые входят в содержание только одного понятия. «Мосты» это общее (родовое) понятие, мосты могут быть разводными и могут быть не разводными. Понятие «разводные мосты» и «неразводные мосты» несовместимы. Понятие «Поцелуев мост» может иметь или не имеет отношения с другими понятиями. «Поцелуев мост» может быть разводным и не разводным, все представленные понятия являются мостами, т.е частично совпадают.

2.5.4. граждане, имеющие право голоса; граждане, принявшие участие в голосовании; граждане, голосовавшие за доверие; граждане, голосовавшие за недоверие

Ответ: Представленные понятия являются определенными понятиями и общими, собирательными понятиями по объему, конкретными и положительными по содержанию. Понятия «граждане, голосовавшие за доверие» и «граждане, голосовавшие за недоверие» несовместимые, так как объёмы не имеют общих элементов, никаким образом не соприкасаются. Понятия «граждане, имеющие право голоса» и «граждане, принявшие участие в голосовании» находятся в отношении равнозначности, так как объёмы данных понятий полностью совпадают, так любой гражданин принявший участие в голосовании – это гражданин имеющий право голосовать.

2.5.5. число; четное число; нечетное число; простое число; число 2; число, делящееся на 4; число, делящееся на 8

Ответ: Понятие «число» представляет собой “предметную область”, в рамках которой остальные понятия соотносятся друг с другом. Содержания понятий «четное число» и «нечетное число» различны по одному признаку. В одном из них нет того признака, который есть в другом. Значит, имеются признаки, входящие в содержание обоих понятий, и есть такие, которые входят в содержание только одного понятия. «Число» - это общее (родовое) понятие, все остальные представленные понятия находятся с ним в отношении подчинения, числа могут быть четными и нечетными, простыми, делящееся на 4 и на 8, 2 так же является числом. Понятие «четные числа» и «не четные числа» несовместимы. Понятие «четное число» и «число 2» находятся в отношении подчинения, так же понятие «простое число» и «число 2» находятся в отношении подчинения, так как объём одного из них обязательно больше объёма другого и полностью его в себя включает (один объём как бы подчиняется другому). Понятие «число, делящееся на 4» и понятие «число, делящееся на 8» находятся с понятием «простое число» в отношении пересечения, так как их объёмы совпадают только частично, «число, делящееся на 4» и «число, делящееся на 8» могут быть как простыми, так и сложными.

2.5.6. собор, памятник архитектуры, крепость, Петропавловская крепость, Петропавловский собор

Ответ: Понятие «собор» и «Петропавловский собор» находятся в отношении подчинения, совместимые понятия, т.е. имеют общие элементы или объекты. Понятие «крепость» и «Петропавловская крепость» находятся в отношении подчинения, совместимые понятия, т.е. имеют общие элементы или объекты. Понятия «собор», «крепость» и «памятник архитектуры» находятся в отношении пересечения, так как их объёмы совпадают только частично. Понятие «Петропавловская крепость» и «Петропавловский собор» находятся в отношении подчинения.

2.5.7. плоская замкнутая геометрическая фигура, треугольник, прямоугольник, квадрат, прямоугольный треугольник

Ответ: совместимые понятия, т.е. имеют общие элементы или объекты. Понятие «плоская замкнута геометрическая фигура» представляет собой “предметную область”, в рамках которой остальные понятия соотносятся друг с другом. Понятие «плоская замкнутая геометрическая фигура» и остальные представленные понятия находится в отношении с подчинения, понятие «треугольник» и «прямоугольный треугольник» находятся в отношении подчинения.

 


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...