Рекомендации по решению задач
⇐ ПредыдущаяСтр 5 из 5
Предложить единую схему решения задач невозможно, однако можно рекомендовать определенную последовательность действий. Приступая к решению задач по какому-либо разделу, необходимо ознакомиться с конкретными физическими понятиями и соотношениями этого раздела, разобрать приведенные примеры решения задач. При самостоятельном решении задач целесообразно придерживаться следующей схемы: 1) по условию задачи представьте себе физическое явление, о котором идет речь, сделайте краткую запись условия, выразив исходные данные в единицах СИ; 2) сделайте, если это необходимо, рисунок, поясняющий описываемый в задаче процесс; 3) напишите уравнение или систему уравнений, отображающих физический процесс; 4) преобразуйте уравнения так, чтобы в них входили лишь исходные данные и табличные величины; 5) решите задачу в общем виде; 6) произведите вычисления и оцените реальность числового ответа.
Примеры решения задач Пример 1. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A =4 м, B =2 м/с, С =-0,5 м/с2. Для момента времени t 1=2 с определить: 1) координату x 1 точки, 2) мгновенную скорость v 1, 3) мгновенное ускорение a 1. Решение. 1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения вместо t заданное значение времени t 1:
x=A+Bt+Ct 3.
Подставим в это выражение значения A, В, С, t 1 и произведем вычисления:
x =(4+4- 0,5 23) м=4 м.
2. Мгновенную скорость в произвольный момент времени найдем, продифференцировав координату х по времени:
.
Тогда в заданный момент времени t 1 мгновенная скорость v 1= B +3C t 12. Подставим сюда значения В, С, t 1 и произведем вычисления: v 1 =- 4 м/с. Знак минус указывает на то, что в момент времени t1=2 с точка движется в отрицательном направлении координатной оси.
3. Мгновенное ускорение в произвольный момент времени найдем, взяв вторую производную от координаты х по времени:
.
Мгновенное ускорение в заданный момент времени t 1 равно a 1 = 6 Ct 1. Подставим значения С, t 1и произведем вычисления: a 1=(-6 0,5 2) м/с=-6 м/с. Знак минус указывает на то, что направление вектора ускорения совпадает с отрицательным направлением координатной оси, причем в условиях данной задачи это имеет место для любого момента времени.
Пример 2. При падении тела с большой высоты его скорость v уст при установившемся движении достигает 80 м/с. Определить время τ, в течение которого начиная от момента начала падения скорость становится равной 1/2 v уст. Силу сопротивления воздуха принять пропорциональной скорости тела. Решение. На падающее тело действуют две силы: сила тяжести и сила сопротивления воздуха . Сила сопротивления воздуха по условиям задачи пропорциональна скорости тела и противоположна ей по направлению:
,
где k - коэффициент пропорциональности, зависящий от размеров, формы тела и от свойств окружающей среды. Напишем уравнение движения тела в соответствии со вторым законом Ньютона в векторной форме:
.
Подставив выражение для , получим
.
Спроецируем все векторные величины на вертикально направленную ось и напишем уравнение для проекций:
После разделения переменных получим
Выполним интегрирование, учитывая, что при изменении времени от нуля до τ (искомое время) скорость возрастает от нуля до 1/2 v уст
После интегрирования получаем
Подставим пределы интегрирования в левую часть равенства:
и найдем из полученного выражения искомое время:
Входящий сюда коэффициент пропорциональности k определим из следующих соображений. При установившемся движении (скорость постоянна) алгебраическая сумма проекций (на ось y) сил, действующих на тело, равна нулю, т. е. mg—kv уст=0, откуда k=mg/v уст. Подставим найденное значение k в полученную формулу для τ:
После сокращений и упрощений получим
Подставив в эту формулу значения v уст, g, ln2 и произведя вычисления, получим τ=5,66 с.
Пример 3. Два шара массами m 1=2,5 кг и m 2=1,5 кг движутся навстречу друг другу со скоростями v 1=6 м/с и v 2 = 2 м/с. Определить: 1) скорость и шаров после удара; 2) кинетические энергии шаров W 1 до и W 2 после удара; 3) долю кинетической энергии w шаров, превратившейся во внутреннюю энергию. Удар считать прямым, неупругим. Решение. 1. Неупругие шары не восстанавливают после удара своей первоначальной формы. Следовательно, не возникают силы, отталкивающие шары друг от друга, и шары после удара будут двигаться совместно с одной и той же скоростью и. Определим эту скорость по закону сохранения импульса. Так как шары движутся вдоль одной прямой, то этот закон можно записать в скалярной форме:
, откуда
.
Направление скорости первого шара примем за положительное; тогда при вычислении скорость второго шара, который движется навстречу первому, следует взять со знаком минус:
u =(2,5 6—1,5 2)/(2,5+1,5) м/с=3 м/с.
2. Кинетические энергии шаров до и после удара определим по формулам
; .
Произведя вычисления по этим формулам, получим
W 1=(2,5 62/2+1,5 22/2)=48 (Дж); W 2=(2,5+1,5) 3 2 =18 (Дж).
3. Сравнение кинетических энергий шаров до и после удара показывает, что в результате неупругого удара шаров произошло уменьшение их кинетической энергии, за счет чего увеличилась их внутренняя энергия. Долю кинетической энергии шаров, пошедшей на увеличение их внутренней энергии, определим из соотношения
; .
Пример 4. Платформа в виде диска радиусом R = 1,5 м и массой m 1 = 180 кг вращается по инерции около вертикальной оси с частотой n =10 мин-1. В центре платформы стоит человек массой т 2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы?
Решение. По закону сохранения момента импульса,
,
где J 1 - момент инерции платформы; J 2 - момент инерции человека, стоящего в центре платформы; - угловая скорость платформы с человеком, стоящим в ее центре; J2' - момент инерции человека, стоящего на краю платформы; ω' - угловая скорость платформы с человеком, стоящим на ее краю. Линейная скорость человека, стоящего на краю платформы, связана с угловой скоростью соотношением
.
Определив отсюда ω' и подставив полученное выражение в формулу закона сохранения момента импульса, будем иметь
v=(J 1 +J 2 )ω R/(J 1 +J' 2)
Момент инерции платформы рассчитываем как для диска; следовательно, . Момент инерции человека рассчитываем как для материальной точки. Поэтому J 2=0, J' 2 =m 2 R 2. Угловая скорость платформы до перехода человека равна ω=2π n. Заменив в формуле скорости величины J 1, J 2, J' 2. и ω их выражениями, получим
Сделав подстановку значений т 1, т 2, п, R и π, найдем линейную скорость человека: (м/с).
Пример 5. Кинетическая энергия WK электрона равна 1 МэВ. Определить скорость электрона. Решение. Релятивистская формула кинетической энергии
где E 0= m 0 c 2 - энергия покоя электрона. Выполнив относительно β преобразования, найдем скорость частицы, выраженную в долях скорости света (β= v / c):
.
Вычисления по этой формуле можно производить в любых единицах энергии, так как наименования единиц в правой части формул сократятся, и в результате подсчета будет получено отвлеченное число. Подставив числовые значения Е 0и WK в мегаэлектрон-вольтах, получим β =0,941. Так как v= β c, то v =0,941∙3∙108= 2,82·108 (м/с). Чтобы определить, является ли частица с кинетической энергией WK релятивистской или классической, достаточно сравнить кинетическую энергию частицы с ее энергией покоя. Если <<1, частицу можно считать классической.
Пример 6. Материальная точка массой т =5 г совершает гармонические колебания с периодом Т =2 с. Амплитуда колебаний A =3 см. Определить: 1) скорость v точки в момент времени, когда смещение х= 1,5 см; 2) максимальную силу Fmax, действующую на точку.
Решение. 1. Уравнение гармонического колебания имеет вид
а формулу скорости получим, взяв первую производную по времени от смещения:
Чтобы выразить скорость через смещение, надо исключить из формул время. Для этого возведем оба уравнения в квадрат, разделим первое на А2, второе на A 2ω 2 и сложим:
Решив последнее уравнение относительно v, найдем
Поскольку , получаем
Выполнив вычисления, получим м/c Знак плюс соответствует случаю, когда направление скорости совпадает с положительным направлением оси х, знак минус – случаю, когда направление скорости совпадает с отрицательным направлением оси х. 2. Силу, действующую на точку, найдем по второму закону Ньютона:
где а - ускорение точки, которое получим, взяв производную по времени от скорости:
Подставив выражение ускорения в формулу второго закона Ньютона, получим
Отсюда максимальное значение силы
Подставив в это уравнение значения величин π, T, т и A, найдем Н.
Пример 7. Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях, уравнения которых , , где А 1 = 1 см, A 2=2 см, ω=π с-1. Найти уравнение траектории точки. Решение. Чтобы найти уравнение траектории точки, исключим время t из заданных уравнений. Для этого воспользуемся формулой
В данном случае α=ω t, поэтому
Как следует из условия задачи, , и уравнение траектории
.
Полученное выражение представляет собой уравнение параболы, ось которой совпадает с осью Ох. Из уравнений, заданных в условии задачи, следует, что смещение точки по осям координат ограничено и заключено в пределах от -1 до +1 см по оси Ох и от -2 до +2 см по оси Оу.
Пример 8. Найти молярную массу М смеси кислорода массой m 1=25 г и азота массой m 2=75 г. Решение. Молярная масса смеси М см есть отношение массы смеси т см к количеству вещества смеси υсм т.е.
Mсм=mсм/υсм
Масса смеси равна сумме масс компонентов смеси m см= m 1+ m 2. Количество вещества смеси равно сумме количеств вещества компонентов. Подставив в формулу (1) выражения m см и υсм, получим
Молярные массы M 1 кислорода и М 2, азота: M 1 =32×10-3 кг/моль, М 2=28×10-3 кг/моль. Подставим значения величин и произведем вычисления:
(кг/моль)
Пример 9. В баллоне объемом V =10 л находится гелий под давлением p 1=l МПа при температуре T 1=300 К. После того как из баллона был израсходован гелий массой m =10 г, температура в баллоне понизилась до T 2=290 К. Определить давление p 2 гелия, оставшегося в баллоне.
Решение. Для решения задачи воспользуемся уравнением Клапейрона - Менделеева, применив его дважды к начальному и конечному состояниям газа. Для начального состояния уравнение имеет вид
p 1 V = RT1,
а для конечного состояния –
p2V= RT2,
где m 1 и m 2 - массы гелия в начальном и конечном состояниях. Выразим массы m 1 и m 2 гелия:
;
и вычтем m 2 из m 1:
Отсюда найдем искомое давление:
Подставив значения величин, получим р2 =3,64∙105 Па Пример 10. Найти среднюю кинетическую энергию одной молекулы аммиака NH 3 при температуре t =27° С и среднюю энергию вращательного движения этой молекулы при той же температуре. Решение. Средняя полная энергия молекулы определяется по формуле
где i - число степеней свободы молекулы; k - постоянная Больцмана; Т - термодинамическая температура газа: T = t + Т 0, где Т 0=273 К. Число степеней свободы i четырехатомной молекулы, какой является молекула аммиака, равно 6. Подставив значения величин, получаем
Дж.
Средняя энергия вращательного движения молекулы определяется по формуле
где число 3 означает число степеней свободы поступательного движения. Подставим значения величин и вычислим:
Дж. Пример 11. Средняя длина свободного пробега < l > молекулы углекислого газа при нормальных условиях равна 40 нм. Определить среднюю арифметическую скорость < v > молекул и число z соударений, которые испытывает молекула в 1 с. Решение. Средняя арифметическая скорость молекул определяется по формуле
где М - молярная масса вещества. Подставив числовые значения, получим < v >=362 м/с. Среднее число z соударений молекулы в 1 с определяется отношением средней скорости < v > молекулы к средней длине ее свободного пробега < l >:
. Подставив в эту формулу значения < v >=362 м/с, < l >=40 нм=4×10-8 м, получим z = 9,05×109 с-1.
Пример 12. Определить изменение D S энтропии при изотермическом расширении кислорода массой m =10 г от объема V 1=25 л до объема V 2=100 л. Решение. Так как процесс изотермический, то в общем выражении энтропии температуру выносят за знак интеграла. Выполнив это, получим
Количество теплоты Q, полученное газом, найдем по первому началу термодинамики: Q= D U+A. Для изотермического процесса D U =0, следовательно, Q=A, а работа А для этого процесса определяется по формуле
С учетом этого получаем
Подставив числовые значения и произведя вычисления, получим
DS=(10×10-3/(32×10-3)) ×8,31 ln(100×10-3 / (25×10-3))=3,60 (Дж/К).
ЗАДАЧИ
1. Три четверти своего пути автомобиль прошел со скоростью v 1=60 км/ч, остальную часть пути - со скоростью v 2 = 80 км/ч. Какова средняя путевая скорость < v > автомобиля? 2. Первую половину пути тело двигалось со скоростью v 1=2 м/с, вторую - со скоростью v 2=8 м/с. Определить среднюю путевую скорость < v >. 3. Движение материальной точки задано уравнением x=At+Bt2, где A =4 м/с, В= - 0,05 м/с2. Определить момент времени, в который скорость v точки равна нулю. Найти координату и ускорение в этот момент. 4. Движения двух материальных точек выражаются уравнениями: x 1 =A 1 +B 1 t+C 1 t2, x 2 =A 2 +B 2 t+C 2 t2, где A 1=20 м, A 2=2 м, B 1 =B 2 = 2 м/с, C 1= - 4 м/с2, С 2=0,5 м/с2. В какой момент времени t скорости этих точек будут одинаковыми? Определить скорости v 1 и v 2 и ускорения a 1 и а 2 точек в этот момент. 5. Две материальные точки движутся согласно уравнениям: x 1 =A 1 t+B 1 t 2 +C 1 t 3, x 2 =A 2 t+B 2 t 2 +C 2 t 3, где A 1=4 м/c, B 1=8 м/с2, C 1=- 16 м/с3, A 2=2 м/с, B 2 = - 4 м/с2, С 2=1м/с3. В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости v 1 и v 2 точек в этот момент. 6. Камень брошен вертикально вверх с начальной скоростью v 0=20 м/с. Через какое время камень будет находиться на высоте h =15м? Найти скорость v камня на этой высоте. Сопротивлением воздуха пренебречь. Принять g =10 м/с2. 7. Вертикально вверх с начальной скоростью v 0=20 м/с брошен камень. Через τ=1 с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте h встретятся камни? 8. Движение точки по прямой задано уравнением x=At+Bt2, где A =2 м/с, В= - 0,5 м/с2. Определить среднюю путевую скорость < v> движения точки в интервале времени от t 1=l с до t 2=3 с. 9. Точка движется по прямой согласно уравнению x=At+Bt3, где A =6 м/с, В = - 0,125 м/с3. Определить среднюю путевую скорость < v> точки в интервале времени от t 1=2 с до t 2=6 с. 10. Тело, брошенное вертикально вверх, находилось на одной и той же высоте h= 8,6 м два раза с интервалом D t= 3 с. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела. 11. Движение материальной точки задано уравнением , где A =10 м, В = - 5 м/с2, С =10 м/с. Найти выражения для скорости и ускорения . Для момента времени t =1с вычислить: 1) модуль скорости ; 2) модуль ускорения ; 3) модуль тангенциального ускорения ; 4)модуль нормального ускорения . 12. Движение точки по окружности радиусом R =4 м задано уравнением S = A+Bt+Ct2, где A =10 м, В =-2 м/с, С =1 м/с2. Найти тангенциальное а , нормальное an и полное а ускорения точки в момент времени t =2с. 13. По дуге окружности радиусом R= 10 м движется точка. В некоторый момент времени нормальное ускорение точки аn =4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол φ=60°. Найти скорость v и тангенциальное ускорение a точки. 14. Точка движется по окружности радиусом R=2 м согласно уравнению S = At3, где A =2 м/с3. В какой момент времени t нормальное ускорение аn точки будет равно тангенциальному а ?Определить полное ускорение а в этот момент. 15. Движение точки по кривой задано уравнениями x=A 1 t 3 и y = A 2 t, где A 1=l м/с3, A 2=2 м/с. Найти уравнение траектории точки, ее скорость v и полное ускорение а в момент времени t= 0,8 с. 16. Камень брошен с вышки в горизонтальном направлении с начальной скоростью v 0=30 м/с. Определить скорость v, тангенциальное a и нормальное an ускорения камня в конце второй секунды после начала движения. 17. Диск радиусом R =20 см вращается согласно уравнению φ= A+Bt+Сt 3, где A =3 рад, В =-1 рад/с, С =0,1 рад/с3. Определить тангенциальное a нормальное аn и полное а ускорения точек на окружности диска для момента времени t =10 с. 18. Колесо автомашины вращается равноускоренно. Сделав N =50 полных оборотов, оно изменило частоту вращения от n 1=4 с1 до n 2=6 с1. Определить угловое ускорение e и время вращения Δ t колеса. 19. Диск вращается с угловым ускорением ε = - 2 рад/с2. Сколько оборотов N сделает диск при изменении частоты вращения от n 1=240 мин-1 до n 2=90 мин-1? Найти время Δ t, в течение которого это произойдет. 20. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R= 50 м. Уравнение движения автомобиля имеет вид S (t) = A+Bt+Ct2, где A =10 м, B =10 м/с, С =-0,5 м/с2. Найти скорость v автомобиля, его тангенциальное a τ, нормальное аn. и полное а ускорения в момент времени t =5 с. 21. Два бруска массами m 1=l кг и m 2=4 кг, соединенные шнуром, лежат на столе. С каким ускорением а будут двигаться бруски, если к одному из них приложить силу F =10 H, направленную горизонтально? Какова будет сила натяжения Т шнура, соединяющего бруски, если силу F =10 Н приложить к первому бруску? ко второму бруску? Трением пренебречь. 22. Наклонная плоскость, образующая угол α=25° с плоскостью горизонта, имеет длину l=2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время t =2 с. Определить коэффициент трения μ тела о плоскость. 23. Материальная точка массой т= 2 кг движется под действием некоторой силы F согласно уравнению x=A+Bt+Ct2+Dt 3, где С =1 м/с2, D=- 0,2 м/с3. Найти значения этой силы в моменты времени t 1 =2 с и t 2=5 с. В какой момент времени сила равна нулю? 24. Шарик массой m =300 г ударился о стену и отскочил от нее. Определить импульс p 1, полученный стеной, если в последний момент перед ударом шарик имел скорость v 0=10 м/с, направленную под углом α=30° к поверхности стены. Удар считать абсолютно упругим. 25. Автоцистерна с керосином движется с ускорением а =0,7 м/с2. Под каким углом α к плоскости горизонта расположен уровень керосина в цистерне? 26. Бак в тендере паровоза имеет длину l =4 м. Какова разность Δ l уровней воды у переднего и заднего концов бака при движении поезда с ускорением a =0,5 м/с2? 27. Катер массой m =2 т с двигателем мощностью N =50 кВт развивает максимальную скорость v mах =25 м/с. Определить время τ, в течение которого катер после выключения двигателя потеряет половину своей скорости. Принять, что сила сопротивления движению катера изменяется пропорционально квадрату скорости. 28. Снаряд массой т= 10 кг выпущен из зенитного орудия вертикально вверх со скоростью v 0=800 м/с. Считая силу сопротивления воздуха пропорциональной скорости, определить время t подъема снаряда до высшей точки. Коэффициент сопротивления k =0,25 кг/с. 29. С вертолета, неподвижно висящего на некоторой высоте над поверхностью Земли, сброшен груз массой m =100 кг. Считая, что сила сопротивления воздуха изменяется пропорционально скорости, определить, через какой промежуток времени Δ t ускорение а груза будет равно половине ускорения свободного падения. Коэффициент сопротивления k =10 кг/с. 30. Моторная лодка массой m =400 кг начинает двигаться по озеру. Сила тяги F мотора равна 0,2 кН. Считая силу сопротивления F c пропорциональной скорости, определить скорость v лодки через Δ t =20 с после начала ее движения. Коэффициент сопротивления k =20 кг/с. 31. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса человека М = 60 кг, масса доски т= 20 кг. С какой скоростью и (относительно пола) будет двигаться тележка, если человек пойдет вдоль доски со скоростью (относительно доски) v= 1 м/с? Массой колес пренебречь. Трение во втулках не учитывать. 32. В лодке массой m 1=240 кг стоит человек массой m 2=60 кг. Лодка плывет со скоростью v 1=2 м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью v =4 м/с (относительно лодки). Найти скорость и движения лодки после прыжка человека в двух случаях: 1) человек прыгает вперед по движению лодки и 2) в сторону, противоположную движению лодки. 33. Диск радиусом R=40 см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения μ=0,4, найти частоту п вращения, при которой кубик соскользнет с диска. 34. Автомобиль идет по закруглению шоссе, радиус R кривизны которого равен 200 м. Коэффициент трения μ колес о покрытие дороги равен 0,1 (гололед). При какой скорости v автомобиля начнется его занос? 35. Материальная точка массой m =2 кг двигалась под действием некоторой силы, направленной вдоль оси Ох согласно уравнению x=A+Bt+Ct 2 +Dt3, где В = - 2 м/с, С =1 м/с2, D = - 0,2 м/с3. Найти мощность N, развиваемую силой в момент времени t 1=2 с и t 2=5 с. 36. Мотоциклист едет по горизонтальной дороге. Какую наименьшую скорость v он должен развить, чтобы, выключив мотор, проехать по треку, имеющему форму «мертвой петли» радиусом R =4 м? Трением и сопротивлением воздуха пренебречь. 37. Конькобежец, стоя на льду, бросил вперед гирю массой m 1=5 кг и вследствие отдачи покатился назадсо скоростью v 2=1 м/с. Масса конькобежца m 2=60 кг. Определить работу A, совершенную конькобежцем при бросании гири. 38. Два неупругих шара массами m 1=2 кг и m 2=3 кг движутся со скоростями соответственно v 1=8 м/с и v 1=4 м/с. Определить увеличение D U внутренней энергии шаров при их столкновении в двух случаях: 1) меньший шар нагоняет больший; 2) шары движутся навстречу друг другу. 39. Шар массой m 1, летящий со скоростью v 1=5 м/с, ударяет неподвижный шар массой m 2. Удар прямой, неупругий. Определить скорость и шаров после удара, а также долю ω кинетической энергии летящего шара, израсходованной на увеличение внутренней энергии этих шаров. Рассмотреть два случая: 1) т 1 = 2 кг, m 2=8 кг; 2) m 1=8 кг, m 2=2 кг. 40. Шар массой m 1=200 г, движущийся со скоростью v 1=10 м/с, ударяет неподвижный шар массой m 2=800 г. Удар прямой, абсолютно упругий. Каковы будут скорости v 1 и v 2 шаров после удара? 41. Вычислить момент инерции J проволочного прямоугольника со сторонами а =12 см и b =16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линейной плотностью τ=0,1 кг/м. 42. Определить момент инерции J кольца массой т =50 г и радиусом R =10 см относительно оси, лежащей в плоскости кольца и касательной к нему. 43. Диаметр диска d =20 см, масса т =800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. 44. Найти момент инерции J плоской однородной прямоугольной пластины массой т =800 г относительно оси, совпадающей с одной из ее сторон, если длина а другой стороны равна 40 см. 45. Определить момент инерции J тонкой плоской пластины со сторонами а =10 см и b =20 см относительно оси, проходящей через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью σ=1,2 кг/м2. 46. Тонкий однородный стержень длиной l =50 см и массой m =400 г вращается с угловым ускорением ε=3 рад/с2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент М. 47. Вал массой m =100 кг и радиусом R= 5см вращался с частотой n =8 с-1. К цилиндрической поверхности вала прижали тормозную колодку с силой F =40 H, под действием которой вал остановился через t =10 с. Определить коэффициент трения μ. 48. Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m 1=100 г и т 2=110 г. С каким ускорением а будут двигаться грузики, если масса т блока равна 400 г? Трение при вращении блока ничтожно мало. 49. Шар массой m =10 кг и радиусом R =20 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид φ= A+Bt2+Ct 3, где В =4 рад/с2, С = - 1 рад/с3. Найти закон изменения момента сил, действующих на шар. Определить момент сил М в момент времени t= 2с. 50. Через неподвижный блок массой т =0,2 кг перекинут шнур, к концам которого подвесили грузы массами m1= 0,3кг и m2=0,5 кг. Определить силы натяжения T 1 и T 2 шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу. 51. Человек стоит на скамье Жуковского и ловит рукой мяч массой m =0,4 кг, летящий в горизонтальном направлении со скоростью v =20 м/с. Траектория мяча проходит на расстоянии r =0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью w начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг·м2? 52. Шарик массой т= 100 г, привязанный к концу нити длиной l 1=l м, вращается, опираясь на горизонтальную плоскость, с частотой n 1=1 с-1. Нить укорачивается и шарик приближается к оси вращения до расстояния l 2=0,5 м. С какой частотой n 2 будет при этом вращаться шарик? Какую работу А совершит внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь. 53. Маховик вращается по закону, выраженному уравнением φ =A+Bt+Ct2, где A =2 рад, B =32 рад/с, С = - 4 рад/с2. Найти среднюю мощность < N>, развиваемую силами, действующими на маховик при его вращении, до остановки, если его момент инерции J =100 кг·м2. 54. Маховик в виде диска массой m =80 кг и радиусом R= 30см находится в состоянии покоя. Какую работу A 1нужно совершить, чтобы сообщить маховику частоту n =10 с-1? Какую работу A 2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус? 55. Маховик, момент инерции J которого равен 40 кг·м2, начал вращаться равноускоренно из состояния покоя под действием момента силы М =20 Н·м. Вращение продолжалось в течение t= 10 с. Определить кинетическую энергию, приобретенную маховиком. 56. Обруч и сплошной цилиндр, имеющие одинаковую массу т =2 кг, катятся без скольжения с одинаковой скоростью v =5 м/с. Найти кинетические энергии W 1 и W 2 этих тел. 57. Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия Т шара равна 14 Дж. Определить кинетическую энергию поступательного и вращательного движения шара. 58. Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h= 1м. 59. Сколько времени t будет скатываться без скольжения обруч с наклонной плоскости длиной l =2 м и высотой h =10 см? 60. Тонкий прямой стержень длиной l= 1м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол φ=60° от положения равновесия и отпустили. Определить линейную скорость v нижнего конца стержня в момент прохождения через положение равновесия. 61. Фотонная ракета движется относительно Земли со скоростью v =0,6 с. Во сколько раз замедлится ход времени в ракете с точки зрения земного наблюдателя? 62. Собственное время жизни τ0 мю-мезон
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|