Относительная погрешность приближенного значения точного числа
⇐ ПредыдущаяСтр 3 из 3 Точность измерения характеризуется с помощью относительной погрешности. Эти формулы тем точнее, чем ближе значение х к точному значению а, т. е. чем меньше погрешность или Δ. Например, если 9.263 имеет три верных знака (9, 2 и 6), то абсолютная погрешность этого числа Элементарными функциями называются функции одного аргумента, значения которых получаются с помощью конечного числа вычислительных операций над аргументом, зависимой переменной и постоянными числами. Разложение элементарных функций в степенные ряды
Разложение . Лемма. Если для любого отрезка при любом , то . Доказательство. Для произвольного выберем так, чтобы . Применим к формулу Тейлора с остаточным членом в форме Лагранжа: , где . По условию, и . По признаку Даламбера ряд с членами сходится ( ). Поэтому его общий член стремится к 0, значит и при . Ввиду произвольности получаем, что .
Для получения разложения заметим, что , и для любого отрезка . Поэтому лемма применима с , и мы получаем: . Для нахождения разложения и учтем, что и в лемме можно положить . Поэтому Разложения для позволяет нам вывести очень важные для дальнейшего формулы Эйлера. Сначала дадим необходимые определения. Если члены ряда - комплексные числа ( ), то сходимость ряда означает, что одновременно сходятся ряды и . Абсолютная сходимость ряда , по определению, есть сходимость ряда , т.е. ряда . Очевидные неравенства показывают, что абсолютная сходимость ряда равносильна одновременной абсолютной сходимости рядов , и абсолютно сходящиеся ряды с комплексными членами обладают всеми свойствами абсолютно сходящихся рядов с действительными членами. Подставим в разложение для вместо величину . Тогда (пока формально) получим: . Группируя действительные и мнимые слагаемые, получаем: . Для обоснования законности наших действий заметим, что ряд , как доказано выше, абсолютно сходится, поэтому в нем можно переставить слагаемые (в частности так, как это сделано выше), и сумма его сохранится. Упомянем, что и для . Если в разложение для подставить вместо число , то получим: . Поэтому из двух полученных формул следует, что . Кроме того, для любого комплексного числа .
Разложение . Используем равенство: . Разложим в ряд как прогрессию при . . Тогда, интегрируя это разложение, получим: . Это равенство справедливо при . Кроме того, т.к. ряд сходится по теореме Лейбница, равенство сохранится и при .
Разложение . Используем равенство: . Далее, как и выше, при . Поэтому, при . Кроме того, ряд сходится. Значит, написанное выше разложение имеет место и при .
Разложение . Если обозначить , то . Поэтому . Это разложение верно для всех , где - радиус сходимости. Для нахождения используем формулу . Кроме того, без доказательства, отметим, что при разложение справедливо и при , а при - для .
В заключение приведем несколько полезных следствий из разложения . Следствие 1. Легко видеть, . Поэтому при . Полагая , получаем, что и . Этим разложением можно воспользоваться при вычислении логарифмов и при доказательстве формулы Стирлинга. Следствие 2. Формула Стирлинга. Приведем эту формулу без доказательства.
9. Приближенное решение алгебраических уравнений
80. Интерполяция Интерполя́ция, интерполи́рование — в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений. Многим из тех, кто сталкивается с научными и инженерными расчётами часто приходится оперировать наборами значений, полученных экспериментальным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называетсяаппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных. Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах. Следует также упомянуть и совершенно другую разновидность математической интерполяции, известную под названием «интерполяция операторов». К классическим работам по интерполяции операторов относятся теорема Рисса-Торина (Riesz-Thorin theorem) и теорема Марцинкевича (Marcinkiewicz theorem), являющиеся основой для множества других работ.
Определения Рассмотрим систему несовпадающих точек () из некоторой области . Пусть значения функции известны только в этих точках: Задача интерполяции состоит в поиске такой функции из заданного класса функций, что § Точки называют узлами интерполяции, а их совокупность — интерполяционной сеткой. § Пары называют точками данных или базовыми точками. § Разность между «соседними» значениями — шагом интерполяционной сетки. Он может быть как переменным так и постоянным. § Функцию — интерполирующей функцией или интерполянтом. Пример 1. Пусть мы имеем табличную функцию, наподобие описанной ниже, которая для нескольких значений определяет соответствующие значения :
Интерполяция помогает нам узнать какое значение может иметь такая функция в точке, отличной от указанных (например, при x = 2,5). К настоящему времени существует множество различных способов интерполяции. Выбор наиболее подходящего алгоритма зависит от ответов на вопросы: как точен выбираемый метод, каковы затраты на его использование, насколько гладкой является интерполяционная функция, какого количества точек данных она требует и т. п.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|