Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Пути использования ацетил КоА. Механизм образования и значение ацетоуксусной кислоты. Биосинтез кетоновых тел. Кетоацидоз.




Биосинтез ВЖК. Строение пальмитатсинтазного комплекса. Химизм и регуляция процесса.

Биосинтез жирных кислот. Высшие жирные кислоты могут быть синтезированы в организме из метаболитов углеводного обмена. Исходным соединением для этого биосинтеза является ацетил-КоА, образующийся в митохондриях из пирувата – продукта гликолитического распада глюкозы. Место синтеза жирных кислот – цитоплазма клеток, где имеется мультиферментный комплекс синтетаза высших жирных кислот. Этот комплекс состоит из шести ферментов, связанных с ацилпереносящим белком, который содержит две свободные SH-группы (АПБ-SH). Синтез происходит путём полимеризации двууглеродных фрагментов, конечным продуктом его является пальмитиновая кислота – насыщенная жирная кислота, содержащая 16 атомов углерода. Обязательными компонентами, участвующими в синтезе, являются НАДФН (кофермент, образующийся в реакциях пентозофосфатного пути окисления углеводов) и АТФ.

 

Ацетил-КоА поступает из митохондрий в цитоплазму при помощи цитратного механизма (рисунок 20.1). В митохондриях ацетил-КоА взаимодействует с оксалоацетатом (фермент – цитратсинтаза), образующийся цитрат переносится через митохондриальную мембрану при помощи специальной транспортной системы. В цитоплазме цитрат реагирует с HS-КоА и АТФ, вновь распадаясь на ацетил-КоА и оксалоацетат (фермент – цитратлиаза). Начальной реакцией синтеза жирных кислот является карбоксилирование ацетил-КоА с образованием малонил-КоА (рисунок 20.2). Фермент ацетил-КоА-карбоксилаза активируется цитратом и ингибируется КоА-производными высших жирных кислот.

Затем ацетил-КоА и малонил-КоА взаимодействуют с SH-группами ацилпереносящего белка

Далее происходит их конденсация, декарбоксилирование и восстановление образовавшегося продукта

 

 

Синтез ЖК «похож» на β-окисление, но на Продукт реакции взаимодействует с новой молекулой малонил-КоА и цикл многократно повторяется вплоть до образования остатка пальмитиновой кислоты, но наоборот: процесс циклический, но в конце каждого цикла происходит удлинение цепи ЖК на 2 углеродных атома. В конце синтеза пальмитиновой кислоты происходит отщепление АПБ. Процесс синтеза осуществляется пальмитатсинтетазным комплексом. Это доменный белок (состоит из 1 ППЦ, которая в нескольких участках формирует домен, в третичной структуре обладающий ферментативной активностью).

Включает в себя 6 участков, обладающих ферментативной активностью. Все вместе они объединены в АПБ, который связан с фосфопантонеатом (фосфорилированная пантотеновая кислота с SH-группой на конце). На этом конце и протекают все реакции, то есть S не выделяется в среду. Пальмитатсинтетаза имеет 2 функциональные единицы, каждая из которых синтезирует 1 пальмитиновую кислоту.

Продукт реакции взаимодействует с новой молекулой малонил-КоА и цикл многократно повторяется вплоть до образования остатка пальмитиновой кислоты.

Основные особенности биосинтеза жирных кислот по сравнению с β-окислением:

· синтез жирных кислот в основном осуществляется в цитоплазме клетки, а окисление – в митохондриях;

· участие в процессе связывания СО2 с ацетил-КоА;

· в синтезе жирных кислот принимает участие ацилпереносящий белок, а в окислении – коэнзим А;

· для биосинтеза жирных кислот необходимы окислительно-восстановительные коферменты НАДФН, а для β-окисления – НАД+ и ФАД.

Регуляция синтеза жирных кислот Регуляторный фермент синтеза жирных кислот - ацетил-КоА-карбоксилаза

 

Пути использования ацетил КоА. Механизм образования и значение ацетоуксусной кислоты. Биосинтез кетоновых тел. Кетоацидоз.

Ацетил-КоА, являясь конечным продуктом гликолитического цикла, может использоваться как источник энергии (в цикле Кребса), а также участвовать в синтезе триглицеридов, холестерина, стероидов и образовании кетоновых тел.

Пути использования ацетил-КоА:

1.Идет в ЦТК, выделяется энергия при достаточном кол-ве ЩУК.

2.Биосинтез ЖК.

3.Биосинтез холестерина.

4.Биосинтез кетоновых тел.

Механизм образования и значение ацетоуксусной кислоты. Биосинтез кетоновых тел.

Ацетоуксусная кислота (ацетоацетат) и ацетоуксусный эфир. Простейшая из β-кетонокислот, ацетоуксусная СН3—СО—СН2—СООН.

подобно другим β-кетонокислотам, отличается непрочностью. Уже при слабом нагревании она даже в водныхрастворах

разлагается на ацетон и двуокись углерода. Еще менее прочны ее соли с тяжелыми металлами, разлагающиеся с образованием

ацетона даже при обыкновенной температуре. Ацетоуксусная кислота содержится в моче больных диабетом.

Кетоновые тела - это особая транспортная форма ацетил-КоА.

Под термином «кетоновые (ацетоновые) тела» подразумевают ацетоуксусную кислоту (ацетоацетат) СН3СОСН2СООН, β-

оксимасляную кислоту (β-оксибутират, или D-3-гидроксибутират) СН3СНОНСН2СООН и ацетон СН3СОСН3.

Кетоновые тела образуются в печени. Синтез кетоновых тел протекает в печени, в митохондриях. Синтез кетоновых тел начинается с взаимодействия двух молекул ацетил-КоА, которые под действием фермента тиолазы образуют ацетоацетил-КоА

Реакция катализируется ферментом ацетил-КоА-ацетилтрансферазой (ацетоацетил-КоА-тиолазой).

Затем ацетоацетил-КоА взаимодействует еще с одной молекулой ацетил-КоА.

Реакция протекает под влиянием фермента гидроксиметилглутарил-КоА-синтазы:

Образовавшийся β-гидрокси-β-метилглутарил-КоА способен под действием

гидроксиметилглутарил-КоА-лиазы расщепляться на ацетоацетат и ацетил-КоА:

Ацетоуксусная кислота способна восстанавливаться при участии НАД-зависимой D-

β-гидроксибутиратдегидрогеназы; при этом образуется D-β-гидроксимасляная

кислота (D-β-гидроксибутират). Следует еще раз подчеркнуть, что фермент

специфичен по отношению к D-стереоизомеру и не действует на КоА-эфиры:

Регуляция синтеза кетоновых тел. Регуляторный фермент синтеза кетоновых тел -

ГМГ-КоА синтаза.

 ГМГ-КоА-синтаза - индуцируемый фермент; его синтез увеличивается при

повышении концентрации жирных кислот в крови. Концентрация жирных кислот в

крови увеличивается при мобилизации жиров из жировой ткани под действием

глюкагона, адреналина, т.е. при голодании или физической работе.

 ГМГ-КоА-синтаза ингибируется высокими концентрациями свободного

кофермента А.

 Когда поступление жирных кислот в клетки печени увеличивается, КоА связывается

с ними, концентрация свободного КоА снижается, и фермент становится активным.

 Если поступление жирных кислот в клетки печени уменьшается, то, соответственно, увеличивается концентрация

свободного КоА, ингибирующего фермент. Следовательно, скорость синтеза кетоновых тел в печени зависит от поступления

жирных кислот.

Кетоацидоз.

В норме концентрация кетоновых тел в крови составляет 1-3 мг/дл (до 0,2 мМ/л), но при голодании значительно увеличивается.

Увеличение концентрации кетоновых тел в крови называют кетонемией, выделение кетоновых тел с мочой - кетонурией.

Накопление кетоновых тел в организме приводит к кетоацидозу: уменьшению щелочного резерва (компенсированному ацидозу), а в тяжёлых случаях - к сдвигу рН (некомпенсированному ацидозу.Ацидоз достигает опасных величин при сахарном диабете, так как концентрация кетоновых тел при этом заболевании может доходить до 400-500 мг/дл. Тяжёлая форма ацидоза - одна из основных причин смерти при сахарном диабете. Накопление протонов в крови нарушает связывание кислорода

гемоглобином, влияет на ионизацию функциональных групп белков, нарушая их кон-формацию и функцию. Накопление кетоновых тел в организме называется кетозом. Кетоз сопровождается кетонемией и кетонурией. Кетоз бывает физиологическим и патологическим. Физиологический кетоз возникает при голодании, длительной мышечной работе и у новорожденных, патологический – при сахарном диабете. Накоплению кетоновых тел способствуют катехоламины и СТГ. Инсулин снижает синтез кетоновых тел.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...