Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Регуляция липидного обмена. Роль печени в нарушении липидного обмена. Жировая дистрофия печени и факторы ее вызывающие.




При физиологических условиях депонирование липидов, их мобилизация, синтез и распад жирных кислот уравновешивают друг друга по скорости протекания.

1. При ограниченном потреблении углеводов или нарушении их использования (дефиците инсулина) усиливаются мобилизация жирных кислот и их транспорт кровью в печень. Происходит снижение скорости потребления ацетилКоА путем: 1) вовлечения в цикл трикарбоновых кислот; 2) синтеза жирных кислот в печени. Скорость потребления ацетилКоА в ЦТК падает в связи с уменьшением количества промежуточных продуктов обмена углеводов, которые в норме активируют начальные процессы ЦТК. Торможение синтеза жирных кислот в печени вызвано замедлением скорости образования продуктов ЦТК и снижением активности ацетилКоА карбоксилазы, которая катализирует превращение ацетилКоА в малонилКоА — первый продукт синтеза жирных кислот. В результате больше ацетилКоА направляется на синтез ацетоацетилКоА, который используется для образования кетоновых тел и синтеза холестерина.

2. При достаточном поступлении углеводов с пищей и нормальном поступлении глюкозы в клетки (что обеспечивается инсулином) увеличивается содержание метаболитов ЦТК. Два из них (цитрат и изоцитрат) стимулируют ацетилКоАкарбоксилазу, которая катализирует образование малониллКоА — первого продукта на пути синтеза жирных кислот, т. е. ускоряетсяи синтез последних. Накопление ацетиллКоА тормозит декарбоксилирование пирувата. Накопление ацетилКоА — результат интенсивного распада глюкозы и накопления достаточного количества АТФ. избыток АТФ тормозит в ЦТК дегидрогеназу изоцитрата, при этом накапливается его предшественник — цитрат, который переходит из митохондрий в цитоплазму, где распадается до ацетилКоА. Контроль скорости мобилизации и липогенеза происходит под влиянием гормонов. Активация липолиза происходит под воздействием адреналина и норадреналина, кортикостероидов, глюкагона и гормонов гипофиза — вазопрессина, АКТГ, липотропинов. Одновременно эти гормоны ограничивают стимуляцию липогенеза инсулином, результатом является повышение содержания жирных кислот в крови. Обратный процесс — накопление липидов в депо — стимулирует инсулин. Он также активирует липогенез, обеспечивает транспорт глюкозы в клетку и ее окисление по основному пути. Избыточное поступление углеводов с пищей, не компенсируемое энергозатратами, сопровождается чрезмерным накоплением липидов. Недостаточное поступление углеводов с пищей или не компенсируемые углеводами энергозатраты сопровождаются мобилизацией липидов и появлением кетоза. Синтез ацилтриглицеридов и фосфолипидов основывается на одинаковых предшественниках — глицерофосфате и жирных кислот, что определяет конкуренцию за эти компоненты. Холин может лимитировать синтез фосфолипидов.

Роль печени в обмене липидов. В гепатоцитах содержатся практически все ферменты, участвующие в метаболизме липидов. Поэтому паренхиматозные клетки печени в значительной степени контролируют соотношение между потреблением и синтезом липидов в организме. Катаболизм липидов в клетках печени протекает главным образом в митохондриях и лизосомах, биосинтез - в цитозоле и эндоплазматическом ретикулуме. Ключевым метаболитом липидного обмена в печени является ацетил-КоА Жировая дистрофия печени — хроническое болезнь печени, характеризующееся жировой дистрофией печеночных клеток. Встречается довольно часто, развивается под воздействием алкоголя, токсических веществ (медикаментов), при сахарном диабете, анемиях, заболеваниях легких, тяжелых панкреатитах и энтеритах, неполноценном питании, ожирении.

Причины По механизму развития гепатозы появляются вследствие избыточного поступления жиров в печень, перегрузки печени пищевыми жирами и углеводами или вследствие нарушения выведения жиров из печени. Нарушение выведения жира из печени происходит при понижении количества веществ, участвующих в переработке жиров (белок, липотропные факторы). Нарушается образование из жиров фосфолипидов, бета-липопротеинов, лецитина. И лишние свободные жиры откладываются в печеночных клетках.

Основные мембраны клетки, их функции. Строение и функции клеточных мембран. Липидный состав и строение липидного бислоя. Белки мембран. Общие свойства мембран: жидкостность, кристалличность, асимметричность, избирательная проницаемость. Механизмы переноса веществ через мембраны: простая диффузия, первично активный транспорт (транспортные АТФ-азы), вторично активный транспорт (симпорт и антипорт).

Биологические мембраны – сложные надмолекулярные структуры, окружающие все живые клетки и образующие в них замкнутые, специализированные компартменты – органеллы. Мембрану, ограничивающую цитоплазму клетки снаружи, называют цитоплазматической или плазматической мембраной. Различают ядерную, митохондриальную, лизосомальную мембраны, мембраны комплекса Гольджи, эндоплазматический ретикулум и другие. Некоторые примеры функций биологических мембран. Плазматическая мембрана –ограничивает содержимое клетки от внешней среды; осуществляет контакт с другими клетками, получение, обработку и передачу информации внутрь клетки, поддержание постоянства внутренней среды.Ядерные мембраны (внешняя и внутренняя) – образуют ядерную оболочку, которая отделяет хромосомный материал от цитоплазматических органелл; через поры ядерной оболочки происходит транспорт белков и нуклеиновых кислот в ядро и из ядра. Митохондриальные мембраны – осуществляют преобразование энергии в ходе окислительного фосфорилирования, синтез АТФ.Лизосомальные мембраны – ограничивают гидролитические ферменты от цитоплазмы клетки, препятствуют самоперевариванию (аутолизу) клеток, способствуют поддержанию постоянства рН среды в лизосомах.Мембраны эндоплазматического ретикулума – принимают участие в образовании новых мембран, осуществляют синтез белков, липидов,

полисахаридов, окисление гидрофобных метаболитов и ксенобиотиков.Все мембраны по своей организации и составу обнаруживают ряд общих свойств. Они:состоят из липидов, белков и углеводов;являются плоскими замкнутыми структурами;имеют внутреннюю и внешнюю поверхности (асимметричны);избирательно проницаемы.Основу мембраны составляет липидный бислой – двойной слой молекул липидов, которые обладают свойством амфифильности (содержат как гидрофильные, так и гидрофобные функциональные группы). В липидном бислое гидрофобные участки молекул взаимодействуют между собой, а гидрофильные участки обращены в окружающую водную среду.Мембранные липиды выполняют роль растворителя мембранных белков, создавая жидкую среду, в которой они могут функционировать. По степени влияния на структуру бислоя и по силе взаимодействия с ним мембранные белки делят на интегральные и периферические. По выполняемым функциям белки в составе мембран делятся наструктурные;каталитические;рецепторные;транспортные.Количество белков в мембранах могут существенно отличаться. Например, в миелиновой мембране, предназначенной для изоляции нервных волокон, белки составляют только 25% массы мембраны, а в мембранах митохондрий, связанных с процессами окислительного фосфорилирования, на долю белков приходится около 75% массы. В плазматической мембране доля белков и липидов примерно одинаковы. Углеводы в составе мембран не представлены самостоятельными соединениями, а обнаруживаются только в соединении с белками (гликопротеины) или липидами (гликолипиды). Длина углеводных цепей колеблется от двух до восемнадцати остатков моносахаридов. Большая часть углеводов расположена на наружной поверхности плазматической мембраны. Функции углеводов в биомембранах – контроль за межклеточными взаимодействиями, поддержание иммунного статуса, рецепция, обеспечение стабильности белковых молекул в мембране.Липидный состав мембран. Компонентами липидов являются остатки жирных кислот и одно- или многоатомных спиртов. Большинство липидов в мембранах млекопитающих представлены фосфолипидами, гликосфинголипидами и

холестеролом. Фосфолипиды в составе мембран подразделяются на две группы:глицерофосфолипиды и сфингомиелины.Глицерофосфолипиды – представляют собой сложные эфиры трёхатомного спирта глицерола, двух остатков жирных кислот и фосфорилированного аминоспирта. Наиболее распространённым глицерофосфолипидом мембран является

фосфатидилхолин.В глицерофосфолипидах у второго углеродного атома глицерола обязательно находится остаток ненасыщенной жирной кислоты (в данном случае линолевой).Сфингофосфолипиды (сфингомиелины) являются производными

аминоспирта сфингозина. Соединение сфингозина и жирной кислоты получило название церамид.В сфингомиелинах водород гидроксильной группы у первого углеродного атома в церамиде замещён на фосфохолин. Пример сфингомиелина, содержащего остаток олеиновой кислоты:Гликолипиды также являются производными церамида, содержащими один или несколько остатков моносахаридов. Например, цереброзиды содержат в первом положении остаток глюкозы или галактозы, а ганглиозиды содержат цепочку из нескольких остатков сахаров, одним из которых обязательно является сиаловая кислота.Холестерол – одноатомный циклический спирт. Это один из главных компонентов плазматической мембраны клеток млекопитающих, в меньшем количестве может присутствовать также в митохондриях, мембранах комплекса Гольджи, ядерных мембранах. Особенно много его в нервной ткани.

Замкнутый липидный бислой определяет основные свойства мембран:1) текучесть – зависит от соотношения насыщенных и ненасыщенных жирных кислот в составе мембранных липидов. 2) латеральная диффузия – свободное перемещение молекул относительно друг друга в плоскости мембран. 3) ограниченная способность к поперечной диффузии, что способствует сохранению асимметрии – структурно-

функциональных различий наружного и внутреннего слоёв мембраны. 4) непроницаемость замкнутого бислоя для большинства

водорастворимых молекул.

Существует несколько механизмов транспорта веществ через мембрану. Диффузия —проникновение

веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация

ниже).

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Оносуществляется специальными белками-переносчиками, образующими так называемые ионные насосы. Наиболее

изученным является Na-/ К--насос в клетках животных, активно выкачивающих ионы Na+ наружу, поглощая при этом ионы К-. Благодаря этому в клетке поддерживается большая концентрация К- и меньшая Na+ по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ.В результате активного транспорта с помощьюмембранного насоса в клетке происходит также регуляция концентрации Mg2-и Са2+. Первично-активный транспорт. Транспорт веществ из среды с низкой концентрацией в среду с более высокой концентрацией не может быть объяснен движением по градиенту, т.е. диффузией. Этот процесс осуществляется за счет энергии гидролиза АТФ или энергии, обусловленной градиентом концентрации каких-либо ионов, чаще всего натрия. В случае, если источником энергии для активного транспорта веществ является гидролиз АТФ, а не перемещение через мембрану каких-то других молекул или ионов, транспорт называется первично активным. Вторично-активный транспорт. Вторичным активным транспортом называется перенос через мембрану вещества против градиента его концентрации за счет энергии градиента концентрации другого вещества, создаваемого в процессе активного транспорта. В клетках животных основным источником энергии для вторичного активного транспорта служит энергия градиента концентрации ионов натрия, который создается за счет работы Na+/K+ — АТФазы. Например, мембрана клеток слизистой оболочки тонкого кишечника содержит белок, осуществляющий перенос (симпорт) глюкозы и Na+ в эпителиоциты. Транспорт глюкозы осуществляется лишь в том слу-чае, если Na+, одновременно с глюкозой связываясь с указанным белком, переносится по электрохимическому градиенту. Электрохимический градиент для Na+ поддерживается активным транспортом этих катионов из клетки.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...