Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Химические свойства алкинов




 

Для алкинов характерны реакции присоединения, замещения. Алкины полиме-ризуются, изомеризуются, вступают в реакции конденсации.

1. (гидрирование)

 

2. HC≡CH + Br2 → CHBr=CHBr;

CHBr=CHBr + Br2 → CHBr2—CHBr2 (присоединение галогенов, качественная реакция)

3. CH3—С≡CH + HBr → CH3—CBr=CH2;

CH3—CBr=CH2 + HBr → CH3—CBr2—CHg (присоединение галогеноводородов по правилу Марковникова)

4. (гидратация алинов, реация Кучерова)

 

 

5.(присоединение спиртов)

 

6.(присоединение карбоновых ислот)

 

7. CH≡CH + 2Ag2O → NH3 → AgC≡CAg↓ + H2O (образование ацетиленидов, качественная реакция на концевую тройную связь)

8. CH≡CH + [О] → КMnO4 → HOOC—COOH → HCOOH + CO2 (окисление)

9. CH≡CH + CH≡CH → CH2=CH—С≡CH (катализатор – CuCl и NH4Cl, димеризация)

10. 3HC≡CH → C, 600 °C → С6Н6 (бензол) (циклоолигомеризация, реакция Зелинского)

 

Диеновые углеводороды

 

Алкадиены (диены) – непредельные углеводороды, молекулы которых содержат две двойные связи. Общая формула алкадиенов СnН2n_2. Свойства алкадиенов в значительной степени зависят от взаимного расположения двойных связей в их молекулах.

 

Способы получения диенов

 

1. (метод СВ. Лебедева)

 

2. (дегидратация)

 

3. (дегидрирование)

 

 

Химические свойства диенов

 

Для сопряженных диенов характерны реакции присоединения. Сопряженные диены способны присоединять не только по двойным связям (к C1 и С2, С3 и С4), но и к концевым (С1 и С4) атомам углерода с образованием двойной связи между С2 и С3.

 

Ароматические углеводороды

 

Арены, или ароматические углеводороды, – циклические соединения, молекулы которых содержат устойчивые циклические группы атомов с замкнутой системой сопряженных связей, объединяемые понятием ароматичности, которая обуславливает общие признаки в строении и химических свойствах.

Все связи С—С в бензоле равноценны, их длина равна 0,140 нм. Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф. Кекуле), а все они выровнены (дел окал изованы).

 

 

Формула Кекуле

 

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R): С6Н5—R, R—С6Н4—R. Общая формула гомологического ряда бензола СnН2n_6 (n > 6). Для названия ароматических углеводородов широко используются тривиальные названия (толуол, ксилол, кумол и т. п.). Систематические названия строят из названия углеводородного радикала (приставка) и слова «бензол» (корень): С6Н5—CH3 (метилбензол), С6Н5—С2Н5 (этилбензол). Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Для дизамещен-ных бензолов R—С6Н4—R используется также и другой способ построения названий, при котором положение заместителей указывают перед тривиальным названием соединения приставками: орто– (o -) – заместители соседних атомов углерода кольца (1,2-); мета– (м -) – заместители через один атом углерода (1,3-); пара– (п -) – заместители на противоположных сторонах кольца (1,4-).

 

Виды изомерии (структурная): 1) положения заместителей для ди-, три– и тетра-замещенных бензолов (например, о-, м- и п -ксилолы); 2) углеродного скелета в боковой цепи, содержащей не менее 3 атомов углерода; 3) заместителей (R), начиная с R=С2Н5.

 

Способы получения ароматических углеводородов

 

1. С6Н12 → Pt, 300 °C → С6Н6 + ЗН2 (дегидрирование циклоалканов)

2. н- С6Н14 → Cr2O3, 300 °C → С6Н6 + 4Н2 (дегидроциклизация алканов)

3. ЗС2Н2 → С, 600 °C → С6Н6 (циклотримеризация ацетилена, реакция Зелинского)

 

Химические свойства ароматических углеводородов

 

По химическим свойствам арены отличаются от предельных и непредельных углеводородов. Для аренов наиболее характерны реакции, идущие с сохранением ароматической системы, а именно реакции замещения атомов водорода, связанных с циклом. Другие реакции (присоединение, окисление), в которых участвуют делокали-зованные С-С связи бензольного кольца и нарушается его ароматичность, идут с трудом.

1. C6H6 + Cl2 → AlCl3 → C6H5Cl + HCl (галогенирование)

2. C6H6 + HNO3 → H2SO4 → C6H5—NO2 + H2O (нитрование)

 

3. С6Н6 → H2SO4 → С6Н5—SO3H + H2O (сульфирование)

4. С6Н6 + RCl → AlCl3 → С6Н5—R + HCl (алкилирование)

5. (ацилирование)

 

6. С6Н6 + ЗН2 → t, Ni → С6Н12 циклогексан (присоединение водорода)

7. (1,2,3,4,5,6-гексахлороциклогексан, присоединение хлора)

 

8. С6Н5—CH3 + [О] → С6Н5—COOH кипячение с раствором КMnO4 (окисление алкилбензолов)

 

Галогеноуглеводороды

 

Галогеноуглеводородами называются производные углеводородов, в которых один или несколько атомов водорода заменены на атомы галогена.

 

Способы получения галогеноуглеводородов

 

1. CH2=CH2 + HBr → CH3—CH2Br (гидрогалогенирование ненасыщенных углеводородов)

CH≡CH + HCl → CH2=CHCl

2. CH3CH2OH + РCl5 → CH3CH2Cl + POCl3 + HCl (получение из спиртов)

CH3CH2OH + HCl → CH3CH2Cl + Н2O (в присутствии ZnCl2, t°C)

3. а) CH4+ Cl2 →hv→ CH3Cl + HCl (галогенирование углеводородов)

б)

 

 

Химические свойства галогеноуглево-дородов

 

Наибольшее значение для соединений этого класса имеют реакции замещения и отщепления.

1. CH3CH2Br + NaOH (водн. р-р) → CH3CH2OH + NaBr (образование спиртов)

2. CH3CH2Br + NaCN → CH3CH2CN + NaBr (образование нитрилов)

3. CH3CH2Br + NH3 → [CH3CH2NH3]+Br ↔— HBr ↔ CH3CH2NH2 (образование аминов)

4. CH3CH2Br + NaNO2 → CH3CH2 NO2 + NaBr (образование нитросоединений)

5. CH3Br + 2Na + CH3Br → CH3—CH3 + 2NaBr (реакция Вюрца)

6. CH3Br + Mg → CH3MgBr (образование магнийорганических соединений, реактив Гриньяра)

7. (дегидрогалогенирование)

 

 

Спирты

 

Спиртами называются производные углеводородов, в молекулах которых содержится одна или несколько гидроксильных групп (—OH), связанных с насыщенными атомами углерода. Группа —OH (гидроксильная, оксигруппа) является в молекуле спирта функциональной группой. Систематические названия даются по названию углеводорода с добавлением суффикса - ол и цифры, указывающей положение гидроксигруппы. Нумерация ведется от ближайшего к OH-группе конца цепи.

По числу гидроксильных групп спирты подразделяются на одноатомные (одна группа —OH), многоатомные (две и более групп —OH). Одноатомные спирты: метанол CH3OH, этанол С2Н5OH; двухатомный спирт: этилен-гликоль (этандиол-1,2) HO—CH2—CH2—OH; трехатомный спирт: глицерин (пропантриол-1,2,3) HO—CH2—CH(OH)—CH2—OH. В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты первичные R—CH2—OH, вторичные R2CH—OH, третичные R3C—OH.

По строению радикалов, связанных с атомом кислорода, спирты подразделяются на предельные, или алканолы (CH3CH2—OH), непредельные, или алкенолы (CH2=CH—CH2—OH), ароматические (С6Н5CH2—OH).

Виды изомерии (структурная изомерия): 1) изомерия положения OH-группы (начиная с С3); 2) углеродного скелета (начиная с С4); 3) межклассовая изомерия с простыми эфирами (например, этиловый спирт CH3CH2OH и диметиловый эфир CH3—О—CH3). Следствием полярности связи О—Н и наличия неподеленных пар электронов на атоме кислорода является способность спиртов к образованию водородных связей.

 

Способы получения спиртов

 

1. CH2=CH2 + Н2O/Н+ → CH3—CH2OH (гидратация алкенов)

2. CH3—CHO + Н2 → t, Ni → С2Н5OH (восстановление альдегидов и кетонов)

3. C2H5Br + NaOH (водн.) → С2Н5OH + NaBr (гидролиз галогенопроизводных)

ClCH2—CH2Cl + 2NaOH (водн.) → HOCH2—CH2OH + 2NaCl

4. CO + 2Н2 → ZnO, CuO, 250 °C, 7 МПа → CH3OH (получение метанола, промышленность)

5. С6Н12O6 → дрожжи → 2С2Н5OH + 2CO2 (брожение моноз)

6. 3CH2=CH2 + 2KMnO4 + 4Н2O → 3CH2OH—CH2OH - этиленгиликоль + 2KOH + 2MnO2 (окисление в мягких условиях)

7. а) CH2=CH—CH3 + O2 → CH2=CH—CHO + Н2O

б) CH2=CH—CHO + Н2 → CH2=CH—CH2OH

в) CH2=CH—CH2OH + Н2O2 → HOCH2—CH(OH)—CH2OH (получение глицерина)

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...