Химические свойства альдегидов и ке-тонов
Для карбонильных соединений характерны реакции различных типов: а) присоединение по карбонильной группе; б) восстановление и окисление; в) конденсация; д) полимеризация. 1. (присоединение циановодородной кислоты, образование гидроксинитрилов)
2. (присоединение гидросулбфита натрия)
3. (восстановление)
4. (образование полуацеталец и ацеталей)
5. (взаимодействие с гидроксоламином, образование оксима ацетальдегида)
6. (образование дигалогенопроизводных)
7. (α-галогенирование в присутствии OH¯)
8. (албдольная конденсация)
9. R—CH=O + Ag2O → NH3 → R—COOH + 2Ag↓ (окисление, реакция «серебряного зеркала») R—CH=O + 2Cu(OH)2 → R—COOH + Cu2O↓, + 2H2O (красный осадок, окисление) 10. (окисление кетонов, жесткие условия)
11. n CH2=O → (—CH2—O—) n параформ n = 8—12 (полимеризация)
Карбоновые кислоты и их производные
Карбоновыми кислотами называются органические соединения, содержащие одну или несколько карбоксильных групп —COOH, связанных с углеводородным радикалом. По числу карбоксильных групп кислоты подразделяются на: одноосновные (монокарбоновые) CH3COOH (уксусная), многоосновные (дикарбоновые, трикарбоновые и т. д.). По характеру углеводородного радикала различают кислоты: предельные (например, CH3CH2CH2COOH); непредельные (CH2=CH(—COOH); ароматические (С6Н5COOH). Систематические названия кислот даются по названию соответствующего углеводорода с добавлением суффикса –овая и слова «кислота»: HCOOH – метановая (муравьиная) кислота, CH3COOH – этановая (уксусная) кислота. Для карбоновых кислот характерная структурная изомерия: а) изомерия скелета в углеводородном радикале (начиная с С4); б) межклассовая изомерия, начиная с С2. Возможна цис-транс-изомерия в случае непредельных карбоновых кислот. Электронная плотность π - связи в карбонильной группе смещена в сторону атома кислорода. Вследствие этого у карбонильного углерода создается недостаток электронной плотности, и он притягивает к себе неподеленные пары атома кислорода гидроксильной группы, в результате чего электронная плотность связи О—Н смещается в сторону атома кислорода, водород становится подвижным и приобретает способность отщепляться в виде протона.
В водном растворе карбоновые кислоты диссоциируют на ионы: R—COOH ↔ R—COО¯ + Н+ Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей.
Способы получения карбоновых кислот
1. CH3—СCl3 + 3NaOH → CH3—COOH + 3NaCl + Н2O (гидролиз тригалогенопроизводных) 2. R—CHO + [О] → R—COOH (окисление альдегидов и кетонов) 3. CH3—CH=CH2 + CO + Н2O/Н+ → Ni, р, t → CH3—CH2—CH2—COOH (оксосинтез) 4. CH3C≡N + 2Н2O/ Н+ → CH3COOH + NH4 (гидролиз нитрилов) 5. CO + NaOH → HCOONa; 2HCOONa + H2SO4 → 2HCOOH + Na2SO4 (получение HCOOH)
Химические свойства карбоновых кислот и их производных
Карбоновые кислоты проявляют высокую реакционную способность и вступают в реакции с различными веществами, образуя разнообразные соединения, среди которых большое значение имеют функциональные производные: сложные эфиры, амиды, нитрилы, соли, ангидриды, гало-генангидриды. 1. а) 2CH3COOH + Fe → (CH3COO)2Fe + Н2 (образование солей) б) 2CH3COOH + MgO → (CH3COO)2Mg + Н2O в) CH3COOH + KOH → CH3COОК + Н2O г) CH3COOH + NaHCO3 → CH3COONa + CO2 + Н2O CH3COONa + H2O ↔ CH3COOH + NaOH (соли карбоновых кислот гидролизуются) 2. (образование вложных эфиров)
(омыление вложного эфира)
3. (получение хлорангидридов кислот)
4. (разложение водой)
5. CH3—COOH + Cl2 → hv → Cl—CH2—COOH + HCl (галогенирование в α-положение)
6. HO—CH=O + Ag2O → NH3 → 2Ag + Н2CO3 (Н2O + CO2) (особенности HCOOH) HCOOH → t → CO + Н2O
Жиры
Жиры – сложные эфиры глицерина и высших одноатомных карбоновых кислот. Общее название таких соединений – триглицериды. В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой С15Н31COOH, стеариновой С17Н35COOH) и ненасыщенных (олеиновой С17Н33COOH, линолевой С17Н31COOH). Жиры состоят главным образом из триглицеридов предельных кислот. Растительные жиры – масла (подсолнечное, соевое) – жидкости. В состав триглицеридов масел входят остатки непредельных кислот.
Жирам как сложным эфирам свойственна обратимая реакция гидролиза, катализируемая минеральными кислотами. При участии щелочей гидролиз жиров происходит необратимо. Продуктами в этом случае являются мыла – соли высших карбоновых кислот и щелочных металлов. Натриевые соли – твердые мыла, калиевые – жидкие. Реакция щелочного гидролиза жиров называется также омылением.
Амины
Амины – органические производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы. В зависимости от числа углеводородных радикалов различают первичные RNH2, вторичные R2NH, третичные R3N амины. По характеру углеводородного радикала амины подразделяются на алифатические (жирные), ароматические и смешанные (или жирноароматические). Названия аминов в большинстве случаев образуют из названий углеводородных радикалов и суффикса –амин. Например, CH3NH 2 – метиламин; CH3—CH2—NH2 – этиламин. Если амин содержит различные радикалы, то их перечисляют в алфавитном порядке: CH3—CH2—NH—CH3 – ме-тилэтиламин. Изомерия аминов определяется количеством и строением радикалов, а также положением аминогруппы. Связь N—Н является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи. Третичные амины не образуют ассоциирующих водородных связей. Амины способны к образованию водородных связей с водой. Поэтому низшие амины хорошо растворимы в воде. С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается.
Способы получения аминов
1. R—NO2 + 6[Н] → R—NH2 + 2H2O (восстановление нитросоединений) 2. NH3 + CH3I → [CH3N+H3]I¯ → NH3 → CH3NH 2 + NH 4I (алкилирование аммиака) 3. а) С6Н5—NO2 + 3(NH4)2S → С6Н5—NH2 + 3S + 6NH3 + 2H2O (реакция Зинина) б) С6Н5—NO2 + 3Fe + 6HCl → С6Н5—NH2 + 3FeCl2 + 2Н2O (восстановление нитросоединений) в) С6Н5—NO2 + ЗН2 → катализатор, t → C6H5—NH 2 + 2Н2O 4. R—C≡N + 4[H] → RCH2NH2 (восстановление нитрилов) 5. ROH + NH3 → Al2O3,350 °C → RNH2 + 2H2O (получение низших алкиламинов С2—С4)
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|