Безциркуляционное обтекание круглого цилиндра
Рассмотрим комплексный потенциал, представленный в виде суммы двух, один из которых – поток плоскопараллельного течения, другой – диполя.
Если приравнять к константе получим уравнение эквипотенциальной линии. - линии тока, - уравнение для нулевой линии тока. Если принять , то получим уравнение для нулевой линии тока:
Оно разделится на два: 1) у=0;
2) - окружность с радиусом
В идеальной жидкости трения нет, поэтому можно заменять любую линию тока, и характер течения не изменится, следовательно, если заменить нулевую линию тока твердой поверхностью, то получится задача обтекания цилиндра плоским потоком. Представим функцию тока и потенциал в полярной системе координат:
; ;
Рассмотри составляющие скорости:
Значит: , то есть окружная составляющая скорости изменяется по синусоиде (при , - ). Точки А и В передняя и задняя критические точки соответственно. Максимальные значения окружной скорости при 90˚ и 270˚ - точки С и Д. Нулевая линии тока проходит из (-∞) в передней критической точке А, раздваивается огибает цилиндр, соединяется в задней критической точке В и уходит в (+∞). Для определения распределения давления по поверхности воспользуемся уравнением Бернулли:
Введем в рассмотрение коэффициент давления , показывающий безразмерное избыточное давление на поверхности:
На поверхности существует только окружная скорость, следовательно, для поверхности:
Из полученной формулы следует, что давление на поверхности максимально в критических точках А и В () и минимально в точках С и Д (). Таким образом, распределение давлений симметрично относительно осей х и у. Результирующая сил давления на цилиндр равна нулю. Цилиндр не сносится потоком, его R=0.
Этот парадокс называется парадоксом Эйлера-Даламбера и присущ только для идеальной жидкости. Для реальных жидкостей обтекание цилиндра будет только при очень низких скоростях (). Обычно обтекание цилиндра происходит с отрывами в задней части цилиндра, в результате, давление в лобовой зоне всегда больше, чем в кормовой. Распределение давления описывается экспериментальными линиями, которые отличаются от теоретических. С увеличением скорости распределение давления стремится как бы к теоретическому, и
Обобщенный закон Ньютона
Ньютон установил связь напряжения трения между слоями движущейся жидкости с поперечным градиентом скорости
;
μ – коэффициент пропорциональности, называемый коэффициентом динамической вязкости. - коэффициент кинематической вязкости.
Касательное трение при движении потока вдоль оси х может быть записано в виде:
При движении потока вдоль оси у: При движении потока в плоскости ху в произвольном направлении:
Записанные уравнения выражают обобщенный закон Ньютона для касательных напряжений. В скобках стоят величины, связанные с недиагональными компонентами тензора скоростей деформации. Они выражают скорости скашивания углов в соответствующих плоскостях. Таким образом касательные напряжения являются линейными функциями от скоростей скашивания углов в соответствующих плоскостях. Определим нормальное напряжение вязкой жидкости. Если вязкость отсутствует, то нормальное напряжение не зависит от выбора направления площадки. Нормальные напряжения вязкой жидкости выразим в виде суммы:
Компоненты, учитывающие вязкость связаны с диагональными компонентами тензора скоростей деформации соотношениями:
складываем
Среднее арифметическое нормальных напряжений, приложенных в точке в трех взаимно перпендикулярных направлениях, есть давление потока в этой точке:
обобщенный закон Ньютона для нормальных напряжений
Жидкости, которые подчиняются записанным уравнениям называются ньютоновскими жидкостями. Вязкие растворы, не подчиняющиеся уравнениям называются неньютоновскими, а раздел их изучающий – реология.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|