Главная | Обратная связь
МегаЛекции

Тема 1. Основы аэродинамики.




Основные свойства газов.

Атмосфера представляет собой смесь газов, водяного пара и аэрозолей, то есть твердых и жидких примесей (пыли, продуктов горения и конденсации, соли и т.д.). Объем основных газов составляет: азота 79%, кислорода 21%, аргона 0,93%, углекислого газа 0,03% на долю других газов (неона, гелия, криптона, ксенона, озона) приходится менее 0,01%.

Пары воды - сильно меняющийся по количеству компонент воздуха. Их может быть от 0 (сухой) до 4...5% веса (насыщенный воздух). Все пары, которые находятся в атмосфере, концентрируются в тропосфере.

К свойствам воздуха относят давление, плотность и состав. Плотность определяется температурой, давлением и наличием водяных паров (влажность).

 

Аэродинамические спектры обтекания тел потоком газа.

 
 

 


рис.5

На рисунке представлены спектры обтекания различных тел.

Крыло в потоке несжимаемой жидкости.

При малых скоростях полета сжимаемостью воздуха можно пренебречь. И за счет этого рассматривать обтекание воздухом, как несжимаемой жидкостью.

Закон Бернули.

 
 

Закон Бернули для жидкости гласит, что чем больше скорость течения жидкости в трубе, тем меньшее давление она создает. Закон действителен и для газа, но на малых скоростях, когда не сказывается сжимаемость газа.

 

 

Угол атаки крыла.

Углом атаки крыла принято называть угол между хордой профиля и вектором движения невозмущенного потока воздуха.    

Рис. 6

 

 

Распределение давлений по профилю крыла.

Распределение давления по профилю крыла показано на рис. 7. Распределение зависит от угла атаки крыла.     Рис. 7

 

Точка торможения потока.

Точкой торможения потока называют точку на профиле в том месте, где происходит разделение потока воздуха на поток по верхней и нижней поверхностям. В этой точке максимальное положительное давление. Давление в этой точке равно : P=рV2/2 , где Р- избыточное давление, р - плотность воздуха, V – скорость потока. Выражение рV2/2 называют также скоростным напором.    

Рис. 8

Полная аэродинамическая сила.

На профиль крыла бесконечного удлинения в потоке воздуха действует аэродинамическая сила. Она состоит из сил давления, действующих по нормали к поверхности и сил трения, действующих по касательной к поверхности.

Рис. 9

 

Разложение полной аэродинамической силы.

Полную аэродинамическую силу можно разложить на составляющие: аэродинамическую подъемную силу и силу аэродинамического сопротивления.   Рис. 10

 



Подъемная сила.

Формула подъемной силы: Y=Cy pV2 S / 2 , где  

Y -подъемная сила (Н), Су - коэф. подъемной силы (безразмерная величина), р - плотность воздуха (кг/м3), V - скорость невозмущенного потока (м/с), S - площадь крыла (м2).

 

Фокус.

Фокус - точка на хорде крыла в которую не зависимо от угла атаки можно перевести Y и в этой точке Мz=Mzo=const Для скоростей меньше чем скорость звука фокус составляет 25% от хорды. Мz - момент аэродинамических сил.

 

Сила сопротивления.

Формула силы сопротивления: X=Cx pV2 S / 2 , где  

X - сила сопротивления (Н), Сх - коэф. силы сопротивления.

 

Образование индуктивного сопротивления.

Природа образования индуктивного сопротивления следующая: из-за разности давлений на нижней и верхней поверхности крыла образуется перетекание воздуха с нижней поверхности. В результате этого перетекания на концевой части образуется вихрь, на образование которого и тратится энергия.  

Рис. 11

 

 

Аэродинамическое качество крыла.

    Аэродинамическое качество крыла это отношение подъемной силы к силе сопротивления: K=Y/X=Cy/Cx, где К - аэродинамическое качество крыла. Другими словами К это расстояние на которое улетит параплан с единицы высоты при условии неподвижной атмосферы.

Рис.12

 

Зависимость Су от угла атаки.

График показывающий зависимость Су от угла атаки ALPHA.      

Рис. 13

Поляра крыла.

    Рис. 14 Поляра крыла это график показывающий зависимость Сх от Су    

Геометрические характеристики крыла.

К геометрическим характеристикам крыла относятся: S - площадь крыла L - размах крыла, Вкорн - корневая хорда крыла, Вконц - концевая хорда крыла, Всах - средняя аэродинамическая хорда крыла, Всгх - средняя геометрическая хорда, Lambda - удлинение. Lambda=L2/S

Рис. 15

 

 

Эволюция параплана.

Эволюция параплана идет как и эволюция самолета, дельтаплана, от простого к сложному, с переходами от количества к качеству.

Изначально параплан не сильно отличался от парашюта, как внешне, так и по летным характеристикам. Количество секций на парашюте обычно 7х2 или 9х2, удлинение около 2. Качество около 2. Параплан очень быстро перерос своего родоначальника по всем параметрам. Удлинение современных крыльев достигает 6,7. Качество до 9. Количество секций до 100. Это количественные показатели.

Качественно изменились следующие вещи: появилась разветвленная cтропная система. Поменялся профиль - он стал двояковыпуклый. В профиле появились отверстия перетекания. На некоторых парапланах появились сеточки на воздухозаборниках, появились диагональные нервюры.

 

Сравнительные характеристики учебного и спортивного параплана.

 

Характеристика Учебный Спортивный
Удлинение 4...5 6...7
Количество секций 20...40 50...100
Количество строп, м 300...400 300...400
Вес, кг 5...6 6...7
Качество 5...7 7...9
Скорость, км/ч 20...40 22...55

 

 

Тема 2. Теория планирующего и маневренного полета

 

Установившийся полет (планирование).

 
 


В установившемся полете на параплан действуют следующие силы и моменты:

сила тяжести, полная аэродинамическая сила

 

 

 

Рис. 16

Разложение сил.

 
 

 

 

Разложим полную аэродинамическую силу на составляющие   Рис 17

 

Поляра скоростей планирования.

Полярой скоростей планирования называют линию, которую рисует вектор скорости параплана из начала координат.  

Рис. 18

 

 

Влияние удельной нагрузки, силы и направления ветра на характеристики планирования.

    вар.1   вар. 2           вар. 3 Рассмотрим следующие варианты полета параплана. Вариант 1. Штиль Вариант 2. Средний по величине ветер Вариант 3. Сильный ветер   В штиль на дальность полета нагрузка не влияет. Увеличение нагрузки приводит лишь к увеличению траекторной скорости полета согласно формуле подъемной силы. В ветер происходит складывание векторов скорости параплана и ветра, что меняет картину. Более нагруженный параплан при полете против ветра улетит дальше, А при полете по ветру ближе. Как следствие при полете против ветра нужно увеличить скорость полета с помощью акселератора, а при полете по ветру выгоднее держать скорость соответствующую скорости минимального снижения.

Рис. 19

 

 

Характерные скорости параплана.

Характерные скорости полета можно определить по поляре скоростей планирования. К характерным скоростям относят: Vmin - минимальная скорость или скорость срыва. Vэк - экономическая скорость на которой вертикальное снижение минимально. Vкр - крейсерская скорость - скорость максимального качества. Vmax - максимальная скорость полета.     Рис. 20

Криволинейное движение параплана.

    К криволинейному движению параплана относят: развороты, перекладки и спирали.  

Рис. 21

 
 


Разложение сил в развороте.

При развороте на параплан действуют следующие силы: сила тяжести, сила инерции, аэродинамическая сила.    

Рис. 22

Координированный разворот.

Координированным разворотом называется разворот в горизонтальной плоскости без скольжения параплана.

 

Скольжение.

  Скольжением называют движение параплана под углом к набегающему потоку в горизонтальной плоскости.

Рис. 23

 

Перегрузка.

В некоторых случаях полета аэродинамическая сила превышает вес пилота. В этих случаях на пилота действует перегрузка.

 

n = Y / mg ,

 

где n - перегрузка, Y - подъемная сила крыла, m - масса пилота и параплана, g - ускорение свободного падения.

 

Влияние близости земли. Экранный эффект.

При движении крыла вблизи земли появляется, так называемый, экранный эффект. Сущность явления в том, что при движении у экрана увеличивается аэродинамическое качество, из-за отсутствия скоса потока за крылом. Это явление заметно на дельтапланах, на парапланах ввиду длинных строп этот эффект отсутствует.  

Рис. 24

 

Тема 3. Устойчивость и управляемость параплана.

Понятие устойчивости и управляемости.

Понятие устойчивости раскрывается в школьном курсе физики на примере шаров.  

Рис. 25

Устойчивостью в аэродинамике называется самостоятельное возвращение к исходным параметрам после прекращения внешнего воздействия. К этим параметрам относится скорость и направление полета, угол атаки и тангаж.

Управляемостью называется реакция параплана на управляющие воздействия органов управления.

В динамике полета существует правило. Чем более устойчив параплан, тем хуже он управляется и наоборот, чем лучше управляется, тем менее устойчив.

 

Виды устойчивости.

Устойчивость принято делить на статическую и динамическую.

Статическая устойчивость - способность системы при появлении внешних возмущений создавать стабилизирующие моменты, восстанавливающие нарушенное состояние равновесия.

Динамическая устойчивость - способность системы возвращаться к равновесному состоянию через некоторое время после прекращения возмущающих воздействий с определенными затухающими законами изменения параметров движения.

 

Связанная система координат.

Для разложения сил и моментов действующих на параплан вводится система координат связанная с землей. Ее называют связанной системой координат.

 

Продольная, поперечная и путевая устойчивость.

Статическая устойчивость делится на продольную, поперечную и путевую устойчивость. Продольная это устойчивость в плоскости хоу, поперечная уоz, путевая в zox.

Продольная статическая устойчивость по перегрузке - стремление системы создавать стабилизирующий момент, уменьшающий угол атаки при превышении подъемной силы нормальной перегрузки (попадание в вертикальный восходящий поток) или увеличивающий угол атаки при попадании в нисходящий поток. Продольная статическая устойчивость по перегрузке обеспечивается расположением центра тяжести системы впереди продольного фокуса.

Продольная статическая устойчивость по скорости - стремление системы создавать кабрирующий (при разгоне) или пикирующий (при торможении) моменты при прямолинейном полете с постоянной перегрузкой.

Поперечная статическая устойчивость - стремление системы кренится в сторону обратную созданному скольжению. Обеспечивается расположением ц.т. ниже бокового фокуса.

Путевая статическая устойчивость - стремление системы устранить созданное скольжение. Обеспечивается расположением ц.т. впереди бокового фокуса.

Поперечная и путевая устойчивость взаимосвязаны.

Динамическая устойчивость делится на продольную и путевую. Необходимым условием динамической устойчивости является статическая устойчивость. Система пилот-параплан считается динамически устойчивой, если возвращение к равновесному состоянию после прекращения возмущающего воздействия происходит:

n с небольшими отклонениями параметров движения от равновесных

n с большим декрементом затухания колебаний в процессе восстановления

n с приемлемыми частотами колебаний

Динамическая устойчивость зависит от соотношения величин демпфирующих моментов, возникающих у статически устойчивой системы.

 

Балансировка параплана.

Балансировочное положение - устойчивое положение.

Балансировочной скоростью параплана называется скорость при полностью отпущенном управлении. Балансировочная скорость задается центровкой параплана. Средняя балансировочная скорость у большинства парапланов 30...35 км/ч.

 

Параметры влияющие на управляемость параплана.

Существуют различные способы управления движением системы параплан-пилот.

n с помощью строп управления (СУ)

n акселератором или триммером

n перемещением центра тяжести пилота в подвесной системе

 

1. С помощью СУ

Затягивая СУ пилот отклоняет заднюю кромку, увеличивая подъемную силу и сопротивление полукрыла. Это приводит к торможения полукрыла и возникновение крена. В параметры влияющие на управляемость входит картина натяжения задней кромки и арочность параплана.    

Рис. 26

2. Акселератор или триммер.

  Акселератор и триммер изменяют установочный угол системы сразу во всех сечениях, т.е. выполняют перебалансировку системы.

3. Перемещение центра тяжести пилота в подвесной системе.

Пилот может перемещать свое тело в подвесной системе. Если пилот отклоняет корпус и ноги в в какую либо сторону, то ц.т. смещается в ту же сторону от плоскости симметрии параплана. Плоскость симметрии параплана накренится так, чтобы приблизить центр давления к вертикали, проходящей через ц.т. пилота, это возможно лишь с креном. Отсюда появление разворачивающего момента.  

 

Рис. 27

Складывания.

Т.к. параплан состоит из элементов работающих только на растяжение существуют случаи когда в результате турбулентности атмосферы или неправильного управления возникают силы нарушающие геометрию крыла.

Рассмотрим наиболее частые случаи.

При турбулентности возможно уменьшение угла атаки крыла до отрицательных значений. Это приводит к складыванию части или всего крыла.

При складывании части крыла происходит перебалансировка. Пилот пытается занять место под ц.д. работающей части крыла. При этом сложенная часть не создает подъемной силы, но создает сопротивление, которое создает момент рысканья. Из-за скольжения возникает момент крена. В результате система входит в вращение с увеличивающимся креном и скоростью.     Рис.28  

 

При симметричном складывании не происходит перебалансировки по размаху, значит нет вращения. После потери высоты происходит увеличение угла атаки и крыло снова принимает нормальную форму.

 

Срывы.

При превышении угла атаки критического значения происходит процесс нарастания и отрыва пограничного слоя, что ведет к резкому увеличению Сх и уменьшению Су. Срыв наступает при чрезмерном натяжении строп управления за границу статического срыва (рис. 29) или при незначительно затянутых клевантах, но при больших углах атаки за счет раскачки по тангажу (динамический срыв). Стоит заметить, чем резче затягивать клеванты, тем меньше ход управления до срыва потока. Это объясняется индуцированным вихрем, перемещающимся от задней кромки вперед против потока. (рис. 30)

Рис 29 Рис 30

 
 

 


 

 

Раскачка по тангажу и крену.

Раскачка по крену и тангажу может появляться в случае отсутствия динамической устойчивости. Так в случае если путевая статическая устойчивость существенно больше поперечной устойчивости, то прежде чем восстанавливающий поперечный момент крена вернет систему в балансировочное положение, превышающий его момент рысканья повернет систему в режим скольжения.

При малом сопротивлении параплана (присуще парапланам с диагональными нервюрами) при клевке вперед демпфирующий момент по тангажу может быть недостаточным. В результате длиннопериодическая фаза колебаний по тангажу может быть слабозатухающей. Устраняется активным управлением. В самом начале клевка крыла вперед следует кратковременно притормозить его натяжением клевант. Степень затягивания клевант должна зависеть от интенсивности клевка (иногда клеванты приходится затягивать дальше точки срыва соответствующей нормальному полету). Надо иметь в виду, что демпфировать клевок нужно в самой начальной стадии. Если крыло движется назад - отпускайте клеванты. Таким способом опытный пилот может избежать складываний даже в очень турбулентном воздухе и на большой скорости.

 

 

Сертификационные испытания .

До сегодняшнего момента существовали две системы сертификационных испытаний: AFNOR и DHV. Сейчас родилась новая система, собравшая в себя и AFNOR и DHV.

Они различаются по количествам тестов, методикой исполнения, количеством оцениваемых параметров. Программа DHV более полно оценивает параплан с точки зрения безопасности.

Тесты AFNOR DHV
1 Взлет есть есть
2 Прямолинейный полет, замеры скоростей есть есть
3 Выполнение разворотов   есть
4 Сваливание   есть
5 Фронтальное складывание есть есть
6 Несимметричное складывание есть есть
7 Несимметричное складывание с конт-торможением   есть
8 Срыв с симметричным выведением есть есть
9 Срыв с несимметричным выведением   есть
10 Штопор из балансировочной скорости   есть
11 Штопор из виража   есть
12 Крутая спираль есть есть
13 В-срыв есть есть
14 Посадка есть есть
15 В-срыв с медленным отпусканием есть  
16 Штопор из торможения есть  
17 Удерживаемая асимметрия есть  
18 Маневренность есть  

 

АВИАЦИОННАЯ МЕТЕОРОЛОГИЯ

 

N ТЕМЫ кол-во ч.
Атмосфера
Движение атмосферы
Облака
Разновидности ветров
Турбулентность
Местные ветры
Нестабильность и термичность
Термики
Гроза

 

Атмосфера

 

Состав и свойства воздуха.

Атмосфера представляет собой смесь газов, водяного пара и аэрозолей (пыли, продуктов конденсации). На долю основных газов составляет: азота 78 %, кислорода 21 %, аргона 0.93 %, углекислого газа 0.03 %, на долю других приходится менее 0,01 %.

Воздух характеризуется следующими параметрами: давлением, температурой и влажностью.

 

Международная стандартная атмосфера.

 

Высота, м Температура, 0С Давление, гПа Плотность, кг/м3
1013,3 1,225
9,1 908,3 1,12
3,1 812,1 1,024
-4,8 696,6 0,904

 

 

Градиент температуры.

Воздух нагревается от земли, с высотой уменьшается плотность. Комбинация этих двух факторов создает нормальную ситуацию с более теплым воздухом у поверхности и постепенно охлаждающимся с высотой.

 

 


 

Рис. 31

 

Влажность.

Относительная влажность измеряется в процентах как отношение фактического количества водяных паров в воздухе к максимально возможному при данной температуре. В теплом воздухе может растворится больше водяных паров, чем в холодном. Если воздух остывает, то его относительная влажность приближается к 100 % и начинают формироваться облака.

Холодный воздух зимой более близок к насыщению. Поэтому зимой более низкая база облаков и их распространение.

Вода может быть в трех формах: твердой, жидкой, газообразной. Вода имеет высокую теплоемкость. В твердом состоянии имеет более низкую плотность, чем в жидком. В результате она смягчает климат в масштабах планеты. В газообразном состоянии легче воздуха. Вес водяных паров 5/8 от веса сухого воздуха. В результате влажный воздух поднимается над сухим.

 

Движение атмосферы

 

Ветер.

Ветер возникает от дисбаланса давлений, обычно, в горизонтальной плоскости. Этот дисбаланс появляется из-за различия температур воздуха на соседних участках или циркуляции воздуха по вертикали на различных участках. Первопричина - это солнечный прогрев поверхности.

Ветер называется по направлению, откуда он дует. Например: северный дует с севера, горный - с гор, долинный - в горы.

Эффект Кориолиса.

Эффект Кориолиса очень важен для понимания глобальных процессов в атмосфере. Результат этого эффекта выражается в том, что все объекты, движущиеся в северном полушарии, имеют тенденцию поворачивать вправо, а в южном - влево. Эффект Кориолиса сильно выражен на полюсах и сводится к нулю на экваторе. Причина эффекта Кориолиса - вращение Земли под движущимися объектами. Это не какая-то реальная сила, это иллюзия правого вращения для всех свободно движущихся тел. Рис. 32

 

Воздушные массы.

Воздушной массой называется воздух имеющий одинаковую температуру и влажность, над территорией не менее 1600 км. Воздушная масса может быть холодной, если она образовалась в полярных областях, теплой - из тропической зоны. Она может быть морской или континентальной по влажности.

При приходе ХВМ приземный слой воздуха нагревается от грунта увеличивает нестабильность. При приходе ТВМ приземный слой воздуха охлаждается, опускается и образует инверсию, увеличивает стабильность.

 

Холодный и теплый фронт.

Фронтом называется граница между теплой и холодной воздушной массой. Если вперед движется холодный воздух, то это холодный фронт. Если вперед движется теплый воздух - теплый фронт. Иногда воздушные массы перемещаются до тех пор, пока не остановятся возросшим перед ними давлением. В этом случае фронтальную границу называют стационарным фронтом.

Рис. 33 холодный фронт теплый фронт

 

Фронт окклюзии.

Когда холодный фронт догоняет волну ему предшествующую, получается ситуация, известная как фронт окклюзии. Рис 34    

Облака

 

Типы облаков.


Существуют только три основных вида облаков. Это stratus, cumulus и cirrus т.е. слоистые (St), кучевые (Cu) и перистые (Сi).

слоистые кучевые перистые Рис. 35

 

Классификация облаков по высотам:

от 6 до 13 км высокие облака Cirrus (перистые) Ci Cirrocumulus (перисто-кучевые) Cc Cirrostratus (перисто-слоистые) Cs
от 20 до 6 км облака средних высот Altocumulus (высококучевые) Ac Altostratus (высокослоистые) As Nimbostratus (слоисто-дождевые) Ns Nimbocumulus (кучево-дождевые) Cb
до 2 км низкие облака Cumulus (кучевые) Cu Stratocumulus (слоисто-кучевые) Sc Stratus (слоистые) St

 


Рис. 36

Менее известные облака:

Дымка - образовывается когда теплый и влажный воздух движется на берег, или когда земля излучает тепло ночью в холодный и влажный слой.

Облачная шапка - образуется над вершиной при возникновении динамических восходящих потоков. Рис.37

Облака в виде флага - образуются за вершинами гор при сильном ветре. Иногда состоит из снега. Рис.38

Роторные облака - могут образовываться на подветренной стороне горы, за хребтом в сильный ветер и имеют форму длинных жгутов, расположенных вдоль горы. Они образуются на восходящих сторонах ротора и разрушаются на нисходящих. Указывают на серьезную турбулентность.Рис.39

Волновые или чечевицеобразные облака - формируются при волновом движении воздуха при сильном ветре. Не движутся относительно земли. Рис.40

 

 

 

 

Рис. 37 Рис. 38 Рис.39

Ребристые облака - очень похожи на рябь на воде. Образуются когда один воздушный слой движется над другим со скоростью достаточной для образования волн. Движутся с ветром. Рис.41

Pileus - при развитии грозового облака до слоя инверсии. Грозовое облако может пробить инверсионный слой. Рис. 42


Рис. 40 Рис. 41 Рис. 42

Образование облаков.

Облака состоят из бесчисленного множества микроскопических частичек воды различных размеров: от 0,001 см в насыщенном воздухе до 0,025 при продолжающийся конденсации. Главный путь образования облаков в атмосфере - охлаждение влажного воздуха. Это происходит при охлаждении воздуха, когда он поднимается вверх.

Туман образуется в охлаждающемся воздухе от контакта с землей.

 

Восходящие потоки.

Существуют три главные причины возникновения восходящих потоков. Это потоки из-за движения фронтов, динамические и термические.


 

фронтальные динамические термические

Рис. 43

 

Скорость подъема фронтального потока прямо зависит от скорости движения фронта и обычно составляет 0,2-2 м/с. У динамического потока скорость подъема зависит от силы ветра и крутизны склона, может доходить до 30 м/с. Термический поток возникает при подъеме более теплого воздуха, который в солнечные дни нагревается от земной поверхности. Скорость подъема достигает 15 м/с, но обычно это 1-5 м/с.

 

Точка росы и высота облаков.

Температура насыщения называется точкой росы. Допустим, что поднимаясь воздух охлаждается определенным образом, например , 10С/100 м. Но точка росы понижается только на 0,20С/100 м. Таким образом точка росы и температура поднимающегося воздуха сближаются на 0,80С/100 м. Когда они уравняются произойдет образование облаков. Метеорологи используют сухой и влажный термометры для замера температуры у земли и температуры насыщения. По этим замерам можно вычислить базу облаков. Например: температура воздуха у поверхности 310С, точка росы 150С. Разделив разность на 0,8 получаем базу равную 2000м.

 

Жизнь облаков.

Облака при своем развитии проходят стадии зарождения, роста и распада. Одно изолированное кучевое облако живет около получаса от момента появления первых признаков конденсации до распада в аморфную массу. Однако, часто облака не распадаются так быстро. Это происходит когда влажность воздуха на уровне облаков и влажность облака совпадает. Идет процесс перемешивания. Фактически продолжающаяся термичность приводит к постепенному или быстрому распространению облачности на все небо. Это называется сверхразвитие или OD на лексиконе летчиков.

Продолжающаяся термичность может подпитывать и отдельные облака увеличивая время их жизни более 0,5 часа. Фактически грозы это долгоживущие облака, образованные термическими потоками.

 

Осадки.

Для выпадения осадков необходимы два условия: продолжительные восходящие потоки и высокая влажность. В облаке начинается рост капелек воды или кристаллов льда. Когда они становятся большими, то начинают падать. Идет снег, дождь или град.

 

 

Разновидности ветров

Определение ветра по признакам.

 

Скорость ветра Признаки в окружающей среде
Штиль дым поднимается вверх, растительность неподвижна
0-5 км/ч (0-1,4 м/с) дым поднимается вверх, листва начинает шелестеть
5-8 км/ч (1,4-2,2 м/с) дым отклоняется от вертикали, вершины деревьев двигаются
8-15 км/ч (2,2-4,2 м/с) дым отклоняется на 450, мелкие ветки и трава двигаются
15-29 км/ч (4,2-8,1 м/с) дым отклоняется на 600, трава колышется волнами, водоемы покрываются мелкой рябью
29-40 км/ч (8,1-11 м/с) дым стелется, крупные ветки качаются, трава покрывается рябью, водоемы покрываются средней рябью
40-56 км/ч (11-15,6 м/с) крупные ветки и средние деревья изгибаются, поднимается пыль и снег, на водоемах появляются барашки
более 56 км/ч клонятся крупные деревья, автомобили качаются, трудно идти.

 

 

Ветер возле поверхности.

Земная поверхность оказывает существенное влияние на поток воздуха возле нее. При наблюдении за течением ручья мы видим как вода огибает камни и другие препятствия. Воздушные течения реагируют на землю аналогично. Они предпочитают двигаться вокруг отдельно стоящих гор, чем над ними и параллельно горным хребтам. Поток воздуха движется быстрее в ущелье. Кроме того, изменяя движения ветра, все эти препятствия замедляют движение воздуха у поверхности.

 

Высотные ветры.

Эффект поверхностного трения уменьшает скорость ветра и является причиной того, что ветер дует в направлении, пересекающем изобары, в то время, как в свободной атмосфере следует по изобарам. Ветер на высоте более 500-1000 м над поверхностью уже не подвержен влиянию трения. Следовательно на высотах более 500 м мы находимся в зоне действия воздушных потоков, движущихся по изобарам и со скоростью, соответствующей градиенту давления на данной высоте. Направление поворота ветра от поверхности до высоты свободного потока обычно по часовой стрелке в северном полушарии и наоборот в южном. Лучший способ определения ветра на высоте - это наблюдение за дрейфом облаков верхнего уровня.

 

Струйные течения.

О струйных течениях не было ничего известно до начала полетов крупных самолетов на больших высотах во второй мировой войне.

Струйные течения располагаются на высотах 10-14 км и могут достигать скоростей 350-500 км/ч. Природа возникновения - сильный температурный градиент между полярными и тропическими воздушными массами. Зоны сильных горизонтальных температурных градиентов, фронты на поверхности и струйные течения чаще всего сопутствуют друг другу.

 

Градиент ветра.

    Рис 44 На рис 43 изображен градиент ветра у поверхности при турбулентных и стабильных условиях атмосферы. Природа возникновения аналогична пограничному слою вблизи крыла.

 

Дневное изменение ветра.


Ветер обычно усиливается днем и утихает к вечеру. В течении ночи нижний слой воздуха стабилен. Солнечный прогрев является причиной движения воздуха вверх и вниз, что приносит к поверхности воздух из скоростных верхних слоев.

а) ночь б) день

рис 45

 

Турбулентность

 

Причины турбулентности.

Турбулентность - это хаотическое случайные движение воздуха. И хотя отдельные формы турбулентности отличаются некоторой организованностью, такие как роторы, все-таки определяющий фактор-это случайность.

Существуют три причины турбулентности: механическая, термическая и турбулентность среза.


а) б) в)

рис 46

Ротор.

Ротор это круговое(цилиндрическое) движение воздуха. Обычно роторы возникают в стабильных условиях при средних ветрах. В нестабильных условиях имеется тенденция к дроблению и уничтожению совсем.

 

Признаки турбулентности.

Турбулентность можно увидеть находясь на земле. Любое быстрое изменение направления или скорости ветра указывают на турбулентность. Любые гибкие предметы также могут стать указателем турбулентности: деревья, поля злаковых, водные пространства, дым.

 

 
 

Рис 47

 

Условия и циклы турбулентности.

Каждый тип турбулентности наиболее вероятен при определенных условиях в различное время.

 

Турбулентность Механическая Термическая Среза
Стабильные условия есть нет есть
Нестабильные условия есть есть нет
Утро нет нет есть
День есть есть нет
Вечер и ночь есть(в конце ветреного дня) есть(стихает) есть
Зима есть нет есть
Весна и осень есть есть нет
Лето есть есть(особенно в сухих районах) есть(только во фронтах)
         

6. Местные ветры

 

Прогрев и циркуляция.





©2015- 2017 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов.