Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Отражение и преломление света на границе раздела двух сред




Рассмотрим падение плоской волны на границу, разделяющую две прозрачные однородные диэлектрические среды с показателями преломления и . Будем считать, что граница представляет собой плоскость (так как в пределах бесконечно малой области любую поверхность можно считать плоской). Будем также считать, что сама граница раздела свет не поглощает.

После прохождения границы раздела двух сред падающая плоская волна (луч ) разделяется на две волны: проходящую во вторую среду (луч ) и отраженную (луч ) (рис.3.1.1).


Рис.3.1.1. Преломление и отражение света на границе двух сред.

На рис.3.1.1 N – вектор нормали к поверхности в точке падения единичной длины . Поместим начало координат в точку падения. Определим следующие величины:

Угол падения – это угол между лучом , падающим на преломляющую или отражающую поверхность, и нормалью к поверхности в точке падения.

Угол преломления – это угол между преломленным лучом и нормалью к поверхности в точке преломления.

Угол отражения – это угол между отраженным лучом и нормалью к поверхности в точке отражения.

Закон преломления

После прохождения светом границы раздела двух сред необходимо определить направление распространения преломленной волны и отраженной волны , ираспределение энергии между отраженной и преломленной волной.

В соответствии с уравнением плоской волны (1.4.9) запишем выражения для комплексных амплитуд падающей, отраженной и преломленной волн:

уравнение падающей плоской волны

(3.1.1)

уравнение преломленной плоской волны

(3.1.2)

уравнение отраженной плоской волны

(3.1.3)

где , , – оптические векторы падающей, отраженной и преломленной волн, – волновое число, – радиус-вектор произвольной точки.

Здесь мы используем соотношения скалярной теории, поскольку закон преломления одинаков для векторных и скалярных волн.

Из уравнений падающей и преломленной плоской волны следует, что на границе раздела двух сред у падающей и преломленной волн амплитуды могут быть различны, но должны совпадать значения эйконалов (этого требует условие физической реализуемости, так как иначе волна будет иметь разрыв на границе раздела):

(3.1.4)

Равенство (3.1.4) соблюдается на границе раздела, то есть для всех , перпендикулярных вектору нормали. Таким образом, выражение (3.1.4) можно записать в виде:

при

или:

при

То есть , если . Выполнение этих условий возможно тогда и только тогда, когда . Таким образом, можно вывести формулировки закона преломления в векторной форме:

(3.1.5)

где – некоторый скаляр, или:

(3.1.6)

или:

(3.1.7)

Так как длина оптического вектора равна показателю преломления среды (, ), то из выражения (3.1.7) и определения векторного произведения можно вывести классический закон преломления Снеллиуса (Snell law).

Закон преломления (refraction law):

качественная часть закона:
падающий луч, преломленный луч и нормаль к поверхности раздела двух сред в точке падения лежат в одной плоскости.

количественная часть закона:
произведение показателя преломления на синус угла между лучом и нормалью сохраняет свое значение при переходе в следующую среду:

(3.1.8)

Чтобы найти скаляр , домножим скалярно выражение (3.1.5) на вектор нормали :

, следовательно

(3.1.9)

где

Величина имеет большое значение в математическом аппарате расчета лучей (ray tracing) на компьютере.

Закон отражения

Закон отражения можно вывести в векторной форме аналогично закону преломления, подставив вместо оптического вектора преломленного луча оптический вектор отраженного луча (рис.3.1.2).


Рис.3.1.2. Отражение света на границе двух сред.

Закон отражения (reflection law):

(3.1.10)

Закон отражения можно вывести как частный случай закона преломления при (это просто прием для удобства расчета лучей вгеометрической оптике, в отрицательном значении показателя преломления нет никакого физического смысла). Тогда случай отражения можно не выделять, а включать его в закон преломления при условии, что (рис.3.1.3).


Рис.3.1.3. Отражение света на границе двух сред.

(3.1.11)

Величина в таком случае будет равна:

(3.1.12)

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...