Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Лекция 10.1. Знания и модели их представления




План

1. Основные понятия искусственного интеллекта.

2. Логические модели представления знаний.

3.Продукционные модели представления знаний.

4.Семантические сети.

5.Фреймовые модели представления зна­ний.

6.Представление знаний на основе теории нечетких множеств.

 

Вопрос 1. Основные понятия искусственного интеллекта.

Системы искусственного интеллекта ориентированы на решение большого класса задач, называемых неформализуемыми (трудно формализуемыми). Такие задачи обладают следующими свойствами:

¨ алгоритмическое решение задачи неизвестно или нереализуемо из-за ограниченности ресурсов ЭВМ;

¨ задача не может быть представлена в числовой форме;

¨ цели решения задачи не могут быть выражены в терминах точно определенной целевой функции;

¨ большая размерность пространства решения;

¨ динамически изменяющиеся данные и знания.

В исследованиях по искусственному интеллекту можно выделить
два основных направления.

1. Программно-прагматическое — занимается созданием программ, с помощью которых можно решать те задачи, решение которых до этого считалось исключительно прерогативой человека (программы распознавания, решения логических задач, поиска, классификации). Это направление ориентировано на поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров.

2. Бионическое — занимается проблемами искусственного воспроизведения тех структур и процессов, которые характерны для человеческого мозга и которые лежат в основе процесса решения задач человеком. В рамках бионического подхода сформировалась новая наука —нейроинформатика, одним из результатов которой стала разработка нейрокомпьютеров.

Классическим принято считать программно-прагматическое направление. В рамках этого направления сначала велись поиски моделей и алгоритма человеческого мышления.

Существенный прорыв в практических приложениях систем искусственного интеллекта произошел в середине 70-х годов, когда на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. Так появились системы, основанные на знаниях, — экспертные системы. Сформировался новый подход к решению интеллектуальных задач — представление и использование знаний. Интересно, что понятие «знание» не имеет на сегодняшний день какого-либо исчерпывающего определения.

Знания — это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области. С точки зрения искусственного интеллекта знания можно определить как формализованную информацию, на которую ссылаются в процессе логического вывода.

Приведем ряд определений.

База знаний — это совокупность знаний, описанных с использованием выбранной формы их представления. База знаний является основой любой интеллектуальной системы. База знаний содержит описание абстрактных сущностей: объектов, отношений, процессов.

Знания можно разделить на процедурные и декларативные. Исторически первыми использовались процедурные знания, то есть знания, представленные в алгоритмах. Алгоритмы, в свою очередь, были реализованы в программах. Однако развитие систем искусственного интеллекта повысило приоритет декларативных знаний, то есть знаний, сосредоточенных в структурах данных.

Процедурные знания хранятся в памяти ИС в виде описаний процедур, с помощью которых можно получить знания. Так обычно описываются способы решения задач предметной области, различные инструкции, методики и т, д. Процедурные знания составляют ядро базы знаний.

Декларативные знания — это совокупность сведений о качественных и количественных характеристиках объектов, явлений, представленных в виде фактов и эвристик. Традиционно такие знания накапливались в виде разнообразных таблиц и справочников, а с появлением
ЭВМ приобрели форму информационных массивов и баз данных. Декларативные знания часто называют просто данными.

Одной из наиболее важных проблем разработки систем искусственного интеллекта является представление знаний.

Представление знаний — это их формализация и структурирование, с помощью которых отражаются характерные признаки знаний: внутренняя интерпретируемость, структурированность, связность, семантическая метрика и активность.

При работе со знаниями используются два основных подхода:

¨ логический (формальный) подход, при котором основное внимание уделяется изучению и применению теоретических методов представления знаний, формализации, а также логической полноте;

¨ эвристический (когнитивный) подход, который ориентируется
на обеспечение возможностей решения задач. При этом опора
делается на принцип организации человеческой памяти и эвристическое моделирование. В отличие от формальных, эвристические модели имеют разнообразный набор средств, передающих специфические особенности той или иной области.

Существуют следующие основные модели представления знаний:

¨ логические модели;

¨ продукционные модели;

¨ семантические сети;

¨ фреймовые модели;

¨ модели, основанные на нечетких множествах.

 

Вопрос 2. Логические модели представления знаний.

Согласно логическому подходу, вся система знаний, необходимая для решения прикладных задач, рассматривается как совокупность утверждений.

Система знаний представляется совокупностью формул логики предикатов. Эта логика оперирует простыми высказываниями, расчлененными на субъект (нечто лежащее в основе) и предикат (нечто утверждаемое о субъекте). Предикат отображает наличие или отсутствие у субъекта того или иного признака.

Формулы в базе знаний неделимы. Модификация базы предполагает лишь добавление и удаление формул. Логические методы обеспечивают развитый аппарат вывода новых фактов на основе тех, что представлены в базе знаний.

Основной недостаток логических методов — отсутствие четких принципов организации фактов в базе знаний. Без формулирования таких принципов модель может превратиться в плохо обозримый конгломерат независимых фактов, не поддающихся анализу и обработке.
Поэтому логические методы используются преимущественно в тех
предметных областях, где система знаний невелика по объему и относительно проста по структуре.

В основе логических моделей лежит формальная система, задаваемая четверкой вида:

M=<T, P, A, B>.

Множество Т есть множество базовых элементов различной природы, входящих в состав некоторого набора. Важно, что для множества Т существует некоторый способ определения принадлежности или непринадлежности произвольного элемента к этому множеству.

Множество Р есть множество синтаксических правил. С их помощью из элементов Т образуют синтаксически правильные совокупности.

В множестве синтаксически правильных совокупностей выделяется подмножество А. Элементы А называются аксиомами.

Множество В есть множество правил вывода. Применяя их к элементам А можно получить новые синтаксически правильные совокупности, к которым снова можно применять правила из В.

Правила вывода являются наиболее сложной составляющей формальной системы. В базе знаний хранятся лишь те знания, которые образуют множество А, а все остальные знания получаются из них по правилам вывода.

 

 

Вопрос 3. Продукционные модели представления знаний

 

Психологические исследования процессов принятия решений показали, что, рассуждая и принимая решения, человек использует продукционные правила (от англ. production — правило вывода). В общем случае продукционное правило можно представить в следующем виде:

i: S; L; A→B; Q,

где i — индивидуальный номер продукции; S — описание класса ситуаций, в котором данная структура может использоваться; L — условие, при котором продукция активизируется; А→В — ядро продукции, например: «ЕСЛИ А1, A2,..., Аn ТО В». Такая запись означает, что «если все условия от A1 до Аn являются истиной, то В также истина»; Q —
постусловие продукционного правила, описывает операции и действия (процедуры), которые необходимо выполнить после выполнения В.

В левой части правила продукции ставится некоторое условие, а в правой части — действие. Если все условия истинны, то выполняется действие, заданное в правой части продукции.

При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Механизм вывода связывает знания воедино, а затем выводит из последовательности знаний заключение.

Свойства продукционных моделей:

¨ модульность — отдельные продукционные правила могут быть добавлены, удалены или изменены в базе знаний независимо от других;

¨ каждое продукционное правило является самостоятельным элементом знаний;

¨ простота смысловой интерпретации;

¨ естественность с точки зрения здравого смысла.

Недостатки продукционных систем проявляются тогда, когда число правил становится большим и возникают непредсказуемые побочные эффекты от изменения старого и добавления нового правила. Кроме того, затруднительна оценка целостного образа знаний, содержащихся в системе.

 

Вопрос 4. Семантические сети.

Семантическая сеть — это модель формализации знаний в виде ориентированного графа с размеченными вершинами и дугами. Вершинам соответствуют объекты, понятия или ситуации, а дугам — отношения между ними.

В качестве понятий обычно выступают абстрактные или конкретные объекты, а отношения — это связи типа: «это» («АКО — A-Kind-Of», «is»), «имеет частью» («has part»), «принадлежит». Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:

¨ класс—элемент класса;

¨ свойство—значение;

¨ пример элемента класса.

Наиболее часто в семантических сетях используются следующие
отношения:.

¨ связи типа «часть—целое»;

¨ функциональные связи (определяемые обычно глаголами «производит», «влияет» и др.);

¨ количественные (больше, меньше, равно и т. д.);

¨ пространственные (далеко от, близко от и др.);

¨ временные (раньше, позже и др.);

¨ атрибутивные связи (иметь свойство, иметь значение);

¨ логические связи (И, ИЛИ, НЕ);

¨ лингвистические связи и др.

Достоинства сетевых моделей [52]:

¨ большие выразительные возможности;

¨ наглядность системы знаний, представленной графически;

¨ близость структуры сети, представляющей систему знаний, семантической структуре фраз на естественном языке;

¨ соответствие современным представлениям об организации долговременной памяти человека.

 

Недостатки сетевых моделей [52]:

¨ сетевая модель не дает ясного представления о структуре предметной области, которая ей соответствует, поэтому формирование и модификация такой модели затруднительны;

¨ сетевые модели представляют собой пассивные структуры, для обработки которых необходим специальный аппарат формального вывода и планирования;

¨ сложность поиска вывода на семантических сетях.

 

Вопрос 5. Фреймовые модели представления зна­ний.

Термин фрейм (frame — каркас, рамка) предложен М. Минским в 70-е годы для обозначения структуры знаний по восприятию пространственных сцен. Эта модель, как и семантическая сеть, имеет глубокое психологическое обоснование. Под фреймом понимается абстрактный образ или ситуация. Например, слово «комната» вызывает образ комнаты — «жилое помещение с четырьмя стенами, полом, потолком, окнами и дверью». Из этого описания ничего нельзя убрать, например, убрав окна, мы получим уже чулан, а не комнату. Но в нем есть «слоты» — незаполненные значения некоторых атрибутов — количество окон, цвет стен, высота потолка, покрытие пола
и др. Такой образ и называется фреймом (фреймом минимального описания). Фреймом называется также и формализованная модель этого образа.

Фреймовая модель, основанная на теории М. Минского, представляет собой систематизированную в виде единой теории технологическую модель памяти человека и его сознания. В общем случае фрейм определяется следующим образом:

ƒ = [(r1, v1),…,(rn, vn)],

где ƒ – имя фрейма; vi – значение слота,

 

или

(ИМЯ ФРЕЙМА:

(имя 1-го слота: значение 1 -го слота),

(имя 2-го слота; значение 2-го слота),

(имя n-го слота: значение n-го слота))..

Значением слота может быть практически все что угодно.

Все фреймы взаимосвязаны и образуют единую фреймовую структуру, в которой органически объединены декларативные и процедурные знания. Это дает возможность достаточно быстро производить композицию и декомпозицию информационных структур аналогично тому, как это делал бы человек при описании структуры своих знаний.

Важнейшим свойством фреймов является заимствованное из теории семантических сетей наследование свойств. И во фреймах, и в семантических сетях наследование происходит по связям типа «это» (АКО — A-Kind-Of). Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуются, то есть переносятся,
значения аналогичных слотов, причем наследование свойств может быть частичным.

Фреймовые модели является достаточно универсальными, поскольку позволяют отобразить все многообразие знаний о мире посредством [9]:

¨ фреймов-структур для обозначений объектов и понятий (заем,
залог, вексель);

¨ фреймов-ролей (менеджер, кассир, клиент);

¨ фреймов-сценариев (банкротство, собрание акционеров);

¨ фреймов-ситуаций (авария, рабочий режим устройства и т. д.).

К основным достоинствам фреймовой модели относятся:

¨ способность отражать концептуальную основу организации памяти человека;

¨ наглядность представления;

¨ модульность;

¨ возможность использования значений слотов по умолчанию.

Однако фрейм-представление является не конкретным языком представления знаний, а некоторой идеологической концепцией, реализуемой по-разному в различных языках. Теория фреймов послужила толчком к разработке нескольких языков представления знаний, которые благодаря своим широким возможностям и гибкости стали
в последние годы довольно распространенными. Основным недостатком фреймовых моделей является отсутствие механизмов управления выводом.

 

Вопрос 6. Представление знаний на основе теории нечетких множеств.

 

При попытке формализовать человеческие знания исследователи
столкнулись с проблемой, затруднявшей использование традиционного математического аппарата для их описания. Существует целый класс описаний, оперирующих качественными характеристиками объектов (много, мало, сильный, очень сильный и т. п.). Эти характеристики обычно размыты и не могут быть однозначно интерпретированы, однако содержат важную информацию.

В задачах, решаемых интеллектуальными системами, часто приходится пользоваться неточными знаниями, которые не всегда могут иметь четкие значения истинности.

В начале 70-х американский математик Лотфи Заде предложил формальный аппарат нечеткой (fuzzy) алгебры и нечеткой логики. Позднее это направление получило широкое распространение и положило начало одной из ветвей искусственного интеллекта под названием мягкие вычисления. Л. Заде ввел одно из главных понятий в нечеткой логике — понятие лингвистической переменной.

Лингвистическая переменная (ЛП) — это переменная, значение которой определяется набором словесных характеристик некоторого свойства.

Например, ЛП «ветер» определяется через набор {слабый, умеренный, сильный, очень сильный}. Значения лингвистической переменной определяются через так называемые нечеткие множества.

Нечеткое множество определяется через некоторую базовую шкалу В и функцию принадлежности нечеткому множеству µ(х), х є В, принимающую значения на интервале [0...1]. Таким образом, нечеткое множество В — это совокупность пар вида (х, µ(х)), где хєВ. Часто встречается и такая запись [9]:

где хi — i-е значение базовой шкалы.

Функция принадлежности определяет субъективную степень уверенности эксперта в том, что данное конкретное значение базовой шкалы соответствует определяемому нечеткому множеству.

Рассмотрим пример.

Предположим, имеется задача интерпретации значений ЛП «возраст», таких как «молодой», «преклонный» или «переходный» возраст. Определим «возраст» как ЛП. Тогда «молодой», «преклонный», «переходный» будут значениями этой лингвистической переменной. Более полно, базовый набор значений ЛП «возраст» следующий: В равно {младенческий, детский, юный, молодой, зрелый, преклонный,
старческий}.

Для ЛП «возраст» базовая шкала — это числовая шкала от 0 до 120, обозначающая количество прожитых лет, а функция принадлежности определяет, насколько мы уверены в том, что данное количество лет можно отнести к данной категории возраста.

Например, определить значение нечеткого множества «младенческий возраст» можно так:

«младенческий» =

Для операций с нечеткими знаниями, выраженными при помощи лингвистических переменных, существует много различных способов. Эти способы являются в основном эвристиками.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...