Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Температурные воздействия на трубопровод.




· Температурные воздействия на трубопровод оцениваются возникающими температурными деформациями

,

где - относительные линейные деформации;

- температурный коэффициент линейного расширения;

- нормативный температурный перепад в металле стенок трубы, который следует принимать равным разнице между максимальной или минимальной возможной температурой стенок в процессе эксплуатации и соответственно наименьшей или наибольшей температурой, при которой фиксируется расчетная схема трубопровода (свариваются стыки, привариваются компенсаторы, производится засыпка трубопровода и т.п.). Максимальную или минимальную температуру стенок труб в процессе эксплуатации трубопровода следует определять в зависимости от температуры транспортируемого продукта, грунта, наружного воздуха, а также скорости ветра, солнечной радиации и теплового взаимодействия трубопровода с окружающей средой.

 

Нормативные снеговые нагрузки.

· Нормативная снеговая нагрузка на горизонтальную проекцию надземного трубопровода

где – коэффициент перехода от веса снегового покрытия горизонтальной поверхности земли к снеговой нагрузке на трубопровод ( =0,4);

– нормативное значение веса снегового покрова на 1 м2 горизонтальной поверхности земли, которое выбирается по таблице 4 для соответствующего снегового района Российской Федерации;

– диаметр изоляции или наружный диаметр трубы.

 

Таблица 4. Нормативные значение веса снегового покрова (таблица 4 СНиП 2.01.07-85)

Снеговые районы Российской Федерации I II III IV V VI VII VIII
Sg, кПа 0,8 1,2 1,8 2,4 3,2 4,0 4,8 5,6

 

Ветровые нагрузки.

· Ветровая нагрузка действует перпендикулярно осевой вертикальной плоскости одиночно проложенного трубопровода

(8.24)

где – наружный диаметр с учетом изоляции;

, – нормативное значение статической и динамической составляющих ветровой нагрузки, Н/м2 (СНиП 2.01.07-85 “ Нагрузки и воздействия”).

Статическую составляющую ветровой нагрузки определяют по величине скоростного напора

(8.25)

где – нормативное значение ветрового давления;

- коэффициент, учитывающий изменение ветрового давления по высоте;

– аэродинамический коэффициент лобового сопротивления надземного трубопровода.

Величина скоростного напора определяется в зависимости от района расположения трубопровода (таблица 5).

Таблица 5. Нормативные значения ветровой нагрузки (таблица 5 СНиП 2.01.07-85)

Ветровые районы СССР Ia I II III IV V VI VII
w0, кПа 0,17 0,23 0,30 0,38 0,48 0,60 0,73 0,85

 

В некоторых случаях нормативное значение ветрового давления допускается устанавливать на основе данных метеостанций Госкомгидромета, а также результатов обследования районов строительства с учетом опыта эксплуатации сооружений. При этом нормативное значение ветрового давления , Па, следует определять по формуле

где - численно равно скорости ветра, м/с, на уровне 10 м над поверхностью земли наибольший за пять лет.

 

Аэродинамический коэффициент определяется в зависимости от числа Рейнольдса (критерий подобия в гидроаэродинамике) по диаграмме на рисунке 23.

Число Рейнольдса определяется по законам гидроаэродинамики

(8.27)

где – скорость ветра, м/с;

– характерный линейный размер, м;

– кинематическая вязкость воздуха (при t=15oC и Pатм=1000 гПа принимают =0,146 . 10-4 м2/с).

Если число Рейнольдса Re>35 . 105, принимают аэродинамический коэффициент =0,7.

 

Рисунок 23. Диаграмма для определения аэродинамического коэффициента.

 

 

Динамическую составляющую ветровой нагрузки определяют по формуле

(8.28)

где – коэффициент пульсации скоростного напора (СНиП 2.01.07-85);

ξ – коэффициент динамичности, зависящий от периода колебаний участка трубопровода , соответствующего второй форме свободных горизонтальных колебаний и от логарифмического декремента колебаний надземного трубопровода ∂ (рисунок 24).

 

Рисунок 24. Диаграмма для определения коэффициента динамичности.

 

Если период колебаний <0,25с, то динамическая составляющая не учитывается, т.е. =0.

Логарифмический декремент колебаний трубопровода зависит от конструктивной схемы надземного перехода и может определяться по записям виброграмм свободных затухающих колебаний (рисунок 25).

 

Рисунок 25. Диаграмма свободных затухающих колебаний.

 

Амплитуды последовательных периодов затухающих колебаний образуют геометрическую прогрессию

(8.29)

где – неизвестная постоянная определяемая опытным путем так же, как период колебаний .

Тогда логарифмический декремент колебаний будет определяться

. (8.30)

Для предварительных расчетов (пока не известны все необходимые размеры) логарифмический декремент колебаний принимается для горизонтальных колебаний =0,05, а для вертикальных колебаний =0,03-0,05.

Для определения периода собственных колебаний находят частоту собственных изгибных колебаний . Тогда .

Коэффициент надежности для ветровой нагрузки =1,2.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...