Путь, ведущий в мир чудес, открыт 7 глава
Мы могли бы расположить на орбите Венеры гигантский искусственный солнцезащитный экран, чтобы охладить поверхность; но этот проект был бы невероятно дорогим, а также имел бы многие недостатки, присущие пылевому слою. Однако если бы температуру атмосферы удалось существенно снизить, то углекислый газ мог бы выпасть в виде осадков. На Венере настал бы переходный период, в который бы появились углекислотные океаны. Если бы эти океаны удалось накрыть, чтобы предотвратить повторное испарение – например, налить сверху океаны воды, растопив большой ледяной спутник, доставленный из внешней части Солнечной системы, – то углекислый газ вполне можно было бы вывести из атмосферы, и Венера превратилась бы в водный (или слабогазированный) мир. Также предлагались способы преобразования углекислого газа в карбонатные породы. Все эти предложения по терраформированию Венеры по-прежнему грубые, некрасивые и абсурдно дорогие. Желаемые метаморфозы этой планеты могут оказаться за пределами наших возможностей еще очень долго, даже если мы сочтем такое начинание правильным и ответственным. Азиатская колонизация Венеры, которую представлял себе Джек Уильямсон, должна развернуться где-нибудь в другом месте.
МАРС. На Марсе мы сталкиваемся с прямо противоположной проблемой. Там не хватает парникового эффекта. Эта планета – замерзшая пустыня. Но тот факт, что 4 млрд лет назад на Марсе, по-видимому, были полноводные реки, озера и, возможно, даже океаны – когда Солнце сияло не так ярко, как сегодня, – заставляет задуматься, присуща ли марсианскому климату какая-то естественная нестабильность, что-то висящее на волоске, что может сработать от малейшего толчка и естественным образом вернуть планету в ее древнее благоприятное состояние. Сразу необходимо отметить, что при этом будут уничтожены марсианские формы рельефа, содержащие важнейшую информацию о прошлом, – в особенности это касается слоистого полярного ландшафта.
Насколько нам известно на примере Земли и Венеры, диоксид углерода – парниковый газ. На Марсе найдены минералы-карбонаты, а в одной из полярных шапок – сухой лед. Из них можно выделить углекислый газ. Но чтобы добиться такого парникового эффекта, который позволил бы установить на всем Марсе комфортные температуры, потребовалось бы вспахать всю поверхность планеты и обработать ее на глубину нескольких километров. Кроме ошеломительных инженерных сложностей, которые возникнут при этом на практике – независимо от того, будет ли задействоваться энергия ядерного синтеза, – и неудобств, с которыми придется столкнуться любым закрытым экосистемам, каковые земляне уже успеют оборудовать на планете, такой проект будет означать безответственное уничтожение уникального научного ресурса и базы данных – марсианской поверхности. Что насчет других парниковых газов? В качестве альтернативы можно было бы взять на Марс хлорфторуглероды, предварительно синтезированные на Земле. Насколько нам известно, эти искусственные вещества не встречаются больше нигде в Солнечной системе. Вполне реально произвести хлорфторуглероды на Земле в достаточном количестве для обогрева Марса, поскольку случайно, пользуясь современными технологиями, мы умудрились синтезировать их столько, что поспособствовали глобальному потеплению на нашей планете. Однако доставка этих веществ на Марс будет дорогостоящей. Даже при применении ракет-носителей класса «Сатурн-5» или «Энергия» потребовалось бы выполнять по одному запуску в день на протяжении столетия. Однако, возможно, их удалось бы синтезировать из фторсодержащих минералов на Марсе.
Кроме того, у этой технологии есть серьезный недостаток. Как и на Земле, хлорфторуглероды на Марсе будут мешать формированию озонового слоя. При помощи хлорфторуглеродов на Марсе можно достичь комфортных температур, но при этом интенсивность солнечного ультрафиолета гарантированно останется крайне опасной. Возможно, солнечное ультрафиолетовое излучение удалось бы абсорбировать, оставив в атмосфере слой тончайшей астероидной пыли (или поднять такую пыль с поверхности), внедрив строго отмеренные дозы такого материала в атмосферу выше хлорфторуглеродного слоя. Но тогда мы оказываемся в сложном положении и должны бороться с распространением побочных эффектов, причем для устранения каждого эффекта потребуется отдельное масштабное технологическое решение. Третий возможный парниковый газ для обогрева Марса – аммиак (NH3). Даже небольшого количества аммиака будет достаточно, чтобы температура на поверхности Марса поднялась выше точки замерзания воды. В принципе, это можно сделать при помощи специально полученных микроорганизмов, которые синтезировали бы из марсианского атмосферного азота (N2) аммиак (NH3), как это делают некоторые микробы на Земле, – но уже в марсианских условиях. Либо такую же реакцию можно было бы запустить на специальных фабриках. В качестве альтернативы необходимый азот можно было бы доставить на Марс из какого-нибудь другого мира Солнечной системы. Азот – основной компонент атмосферы, как на Земле, так и на Титане. Ультрафиолет будет вновь разлагать аммиак до азота примерно за 30 лет, поэтому запасы аммиака потребуется постоянно пополнять. Разумно скомбинировав на Марсе парниковые эффекты, оказываемые углекислым газом, хлорфторуглеродами и аммиаком, удалось бы довести поверхностные температуры довольно близко к точке замерзания воды, после чего можно было бы перейти ко второму этапу терраформирования Марса. Температуры будут расти благодаря существенному давлению водяного пара в атмосфере, генетически модифицированные растения будут выделять кислород, а поверхностная окружающая среда – подвергаться тонкой настройке. Можно будет заселить Марс бактериями, сравнительно крупными растениями и животными до того, как вся окружающая среда станет пригодна для существования поселенцев без специальной защиты.
Терраформировать Марс по определению гораздо проще, чем Венеру. Но по нынешним стандартам это по-прежнему очень дорого и разрушительно для окружающей среды. Однако при наличии достаточного обоснования, возможно, терраформирование Марса будет запущено в течение XXII в.
СПУТНИКИ ЮПИТЕРА И САТУРНА. Терраформирование спутников планет юпитерианской группы – это задачи разной степени сложности. Возможно, проще всего было бы взяться за Титан. Там уже есть атмосфера, состоящая в основном из азота – как и земная; атмосферное давление там гораздо ближе к земному, чем на Венере или на Марсе. Более того, важные парниковые газы – NH3 и H2O – практически наверняка присутствуют у него на поверхности в замороженном виде. Производство первичных парниковых газов, которые не замерзают при нынешних температурах Титана, плюс непосредственный разогрев поверхности при помощи ядерного синтеза – таковы, по-видимому, будут важнейшие шаги, с которых однажды начнется терраформирование Титана.
ПРИ НАЛИЧИИ ВЕСКОЙ ПРИЧИНЫ для терраформирования других миров такие величайшие инженерные проекты могут быть осуществимы в тех временны́х рамках, о которых мы здесь говорим; это определенно справедливо для астероидов, возможно для Марса, Титана и других спутников внешних планет, а для Венеры – пожалуй, нет. Мы с Поллаком признаем, что существуют люди, испытывающие сильнейшую тягу к адаптации других миров Солнечной системы для человеческого обитания – обустраивать там обсерватории, исследовательские базы, поселения и усадьбы. Именно в США, в истории которых был период первопроходчества, эта идея может показаться особенно естественной и привлекательной. В любом случае радикальное, но при этом компетентное и разумное изменение экосистем других миров возможно лишь тогда, когда мы будем понимать эти миры значительно лучше, чем сегодня. Сторонники терраформирования сначала должны поддержать долгосрочные и тщательные научные исследования других миров.
Пожалуй, когда мы по-настоящему поймем сложности терраформирования, цена экологических издержек покажется слишком высокой, и мы умерим наши запроcы к другим мирам, ограничившись городами под куполами или под землей либо иными локальными закрытыми экосистемами – значительно усовершенствованными вариантами «Биосферы-2»[68]. Может быть, мы откажемся от мечты преобразовать поверхность планет и спутников и придать им какое-то сходство с Землей. А возможно, что найдутся гораздо более экономичные, красивые и экологически щадящие способы терраформирования, которых мы пока себе не представляем. Но если мы решим всерьез взяться за это дело, то следует задать себе определенные вопросы. Учитывая, что любой вариант терраформирования подразумевает компромис между пользой и издержками, насколько мы можем быть уверены, что при преобразовании планеты важнейшая научная информация не будет уничтожена? Насколько подробно мы должны будем изучить конкретный мир, прежде чем можно будет рассчитывать, что его преобразование даст желаемый результат? Сможем ли мы гарантировать в долгосрочной перспективе, что человеческое сообщество будет поддерживать и обновлять измененный мир, если наши политические институты так недолговечны? Если мир хотя бы теоретически можно заселить – пусть даже микроорганизмами, вправе ли человек изменять его? Какова наша ответственность за сохранение миров Солнечной системы в девственном состоянии для будущих поколений, представители которых могут счесть наши сегодняшние планы по использованию небесных тел слишком недальновидными? Все эти вопросы, пожалуй, можно свести к одному итоговому: можно ли доверить другие миры нам, устроившим такой хаос у себя дома? Вполне можно себе представить, что некоторые технологии, пригодные в перспективе для терраформирования других миров, могут быть использованы для смягчения ущерба, который мы уже нанесли Земле. Учитывая безотлагательные проблемы, важным признаком готовности человека серьезно присматриваться к терраформированию станет наша способность привести в порядок собственный мир. Можно считать это экзаменом на глубину нашего понимания проблемы и готовность за нее браться. Первый шаг преобразования Солнечной системы – гарантировать, что Земля останется пригодной для обитания. Тогда мы будем готовы отправиться к кометам, астероидам, Марсу, спутникам из внешней части Солнечной системы и далее. Прогноз Джека Уильямсона, что это произойдет к XXII в., возможно, не так далек от истины.
ПРЕДСТАВЛЕНИЕ О НАШИХ ПОТОМКАХ, живущих и работающих в других мирах и даже перемещающих некоторые из них по собственному усмотрению, кажется крайне вычурной научной фантастикой. «Будь реалистом», – подсказывает мне внутренний голос. Но это реалистично. Мы на пороге новых технологий, где-то на полпути между невозможным и обыденным, но испытываем противоречивые чувства. В будущем столетии терраформирование может показаться не более невозможным, чем сегодня, – постоянно обитаемая космическая станция, если прежде мы сами не натворим чего-нибудь ужасного. Я думаю, что опыт жизни в других мирах обязательно нас изменит. Наши потомки, рожденные и выросшие где-нибудь в другом месте, естественно, будут тянуться прежде всего к своим мирам, несмотря на всю привязанность, которую могут сохранить к Земле. Их физические потребности, методы удовлетворения этих потребностей, их технологии и общественное устройство – все это должно быть иным. Стебель травы на Земле – обыденность, а на Марсе он будет казаться чудом. Наши потомки с Марса будут уметь ценить зеленое пятнышко. А если стебель травы ничего не стоит, то какова цена человека? Американский революционер Том Пэйн, размышляя в подобном духе, так описывал своих соотечественников:
Желания, обычно сопутствующие возделыванию девственных земель, породили, в частности, такое состояние общества, которое не могли по достоинству оценить в других странах, раздираемых распрями и интригами власть имущих. В такой ситуации человек становится тем, кем должен быть. Он видит свой род… как родных.
Для наших потомков, которые будут путешествовать в космосе и сами увидят череду бесплодных и пустынных миров, станет естественным бережное отношение к жизни. Научившись чему-нибудь из истории существования нашего вида на Земле, они, возможно, захотят применить эту науку в других мирах – чтобы избавить будущие поколения от страданий, которые были вынуждены переносить их предки, чтобы опираться на наш опыт и наши ошибки, когда ничем не ограниченная эволюция человека продолжится в космосе.
Глава 20 Темнота
Вдали, сокрыты от очей дневного света Есть стражи в небесах. Еврипид. Вакханки (ок. 406 г. до н. э.)
В детстве мы боимся темноты. Там может быть что угодно. Неизвестное нас тревожит. По иронии судьбы нам суждено жить в темноте. Это неожиданное научное открытие было сделано всего около 300 лет назад. Оторвитесь от Земли, направьтесь куда вам вздумается и – после краткого голубого проблеска, подождав, пока Солнце не исчезнет из виду, – вы окажетесь в темноте, которую лишь кое-где нарушает мерцание далеких звезд. Даже когда мы повзрослеем, темнота по-прежнему может нас напугать. Некоторые советуют не слишком задумываться, кто еще может жить в этой темноте. «Лучше не знать», – говорят нам. В галактике Млечный Путь 400 млрд звезд. Возможно ли, чтобы во всем этом неисчислимом множестве лишь у нашего неприметного Солнца была обитаемая планета? Возможно. Может быть, возникновение жизни и разума – событие исключительно маловероятное. Также возможно, что цивилизации постоянно возникают, но самоуничтожаются, как только становятся способны на это. Либо кое-где, разбросанные в космосе, вокруг иных солнц обращаются другие миры, похожие на нас. Их обитатели глядят в небеса и задумываются подобно нам, кто еще живет в этой темноте. Может ли Млечный Путь пульсировать жизнью и разумом – одни миры взывают к другим, – тем временем как мы на Земле дожили до важнейшего момента и впервые решили их послушать? Наш вид обнаружил способ связи через тьму, позволяющий преодолевать огромные расстояния. Нет более быстрого, дешевого и дальнего способа связи. Речь о радио. Спустя миллиарды лет биологической эволюции – на их планете или на нашей – внеземная цивилизация не может находиться на одном технологическом уровне с нами. Люди существуют примерно 20 000 веков, но радио у нас появилось всего около ста лет назад. Если инопланетная цивилизация от нас отстает, то, вероятно, слишком значительно, чтобы обладать радио. Если обгоняет, вероятно, очень сильно. Подумайте, какой технологический прогресс достигнут в нашем мире всего за несколько последних веков. То, что для нас технически сложно или невозможно и может восприниматься как волшебство, для них может оказаться тривиальным. Они могут использовать иные, очень продвинутые способы коммуникации с собратьями, но при этом будут знать о радио – средстве связи неоперившихся цивилизаций. Если отправитель и получатель будут обладать даже таким уровнем телекоммуникаций, каким располагаем мы, то мы сможем общаться через большую часть Галактики. Инопланетяне, вероятно, значительно превзошли бы нас в этом. Если они существуют. Но восстает наша боязнь тьмы. Мысли об инопланетянах нас беспокоят. Мы придумываем возражения: «Это слишком дорого». Но даже если оборудовать такую связь по последнему слову техники, то ее годовое обслуживание обойдется дешевле, чем один штурмовой вертолет. «Мы никогда их не поймем». Но поскольку сообщения передаются по радио, инопланетяне, как и мы, должны знать радиофизику, радиоастрономию, у нас должны быть общие технологии радиопередачи. Законы природы повсюду одинаковы; поэтому сама наука оказывается общим языком и средством общения даже между очень несхожими существами – при условии, что и те и другие обладают научными знаниями. Если нам когда-либо посчастливится получить инопланетное сообщение, то расшифровать его, вероятно, будет гораздо проще, чем поймать. «Будет уничижительно узнать, что наша наука примитивна». Но по меркам нескольких следующих веков как минимум часть современной науки будет расцениваться как примитивная – идет ли речь о землянах или об инопланетянах. То же отчасти касается современной политики, этики, экономики и религии. Превзойти современную науку – одна из основных целей науки. Серьезные студенты не впадают в уныние, если листают учебник и обнаруживают, что одна из следующих тем понятна автору, а читателю – пока нет. Обычно студент немного попотеет, усвоит новые знания и по древней человеческой традиции станет листать дальше. «На протяжении всей истории развитые цивилизации уничтожали другие, которые были хотя бы чуть более отсталыми». Конечно. Но если агрессивные цивилизации и существуют, то, просто слушая, мы себя не выдадим. Программы поиска работают только на прием, а не на передачу[69].
В НАСТОЯЩИЙ МОМЕНТ ЭТИ СПОРЫ чисто теоретические. Сейчас мы в беспрецедентных масштабах слушаем радиосигналы, которые могут исходить от других цивилизаций из глубин космоса. Сегодня живет первое поколение ученых, вопрошающих темноту. Вполне возможно, что и последнее поколение ученых, живущее перед тем, как состоится контакт и наступит тот самый момент, в который мы обнаружим: кто-то зовет нас из темноты. Этот проект называется «Поиск внеземного разума» (Search for Extraterrestrial Intelligence – SETI). Позвольте я опишу, насколько мы продвинулись. Первую программу SETI выполнял Фрэнк Дрейк в Национальной радиоастрономической обсерватории в местечке Гринбэнк, штат Западная Виргиния, в 1960 г. В течение двух недель он на одной радиочастоте прослушивал две близлежащие звезды, похожие на Солнце. («Близлежащие» – понятие относительное. Ближняя из этих звезд удалена от нас на 12 световых лет, примерно на 114 трлн км.) Как только Дрейк направил радиотелескоп в небо и включил систему, он почти сразу поймал очень сильный сигнал. Было ли это послание от инопланетян? Затем сигнал исчез. Если сигнал исчезает, то подробно изучить его невозможно. Вы не можете проследить, перемещается ли он вместе с небом по ходу вращения Земли. Если сигнал не повторяется, то вы практически ничего из него не узнаете – это может быть и интерференция земных радиоволн, и ошибка вашего усилителя или детектора… и инопланетный сигнал. Если данные не повторяются, то, как бы красочно ни описывал их ученый, они почти ничего не стоят. Спустя несколько недель сигнал вновь был зафиксирован. Оказалось, что его источник – военный самолет, передающий информацию на несанкционированной частоте. Дрейк зафиксировал отрицательный результат. Но в науке отрицательный результат совсем не равен неудаче. Огромное достижение Дрейка заключалось в том, что ему удалось доказать: современные технологии вполне позволяют прослушать сигналы от гипотетических цивилизаций с других планет или из других звездных систем. С тех пор предпринималось немало таких попыток, зачастую во время, выкраиваемое от других астрономических наблюдений, проводимых при помощи радиотелескопов. Практически ни одна из них не продолжалась более нескольких месяцев. Было еще несколько «ложных тревог», зафиксированных в штате Огайо, в Аресибо (Пуэрто-Рико), во Франции, в России и в других местах, но ни одна из них не выдержала критики мирового научного сообщества. Тем временем технология обнаружения удешевляется; повышается чувствительность, научный авторитет SETI продолжает расти, и даже НАСА и конгресс уже не столь опасаются поддерживать эту программу. Можно и необходимо применять различные стратегии поиска, дополняющие друг друга. Много лет назад стало ясно, что если такая тенденция сохранится, то технология для полноценной SETI-активности станет доступна даже частным организациям (или отдельным богатым людям) и что рано или поздно правительство решится на поддержку масштабной программы. Прошло 30 лет, для некоторых из нас это скорее «поздно», чем «рано». Но все-таки наконец время пришло.
«ПЛАНЕТНОЕ ОБЩЕСТВО» – некоммерческая членская организация, которую в 1980 г. основали я и Брюс Мюррей, в ту пору работавший директором ЛРД, – занимается исследованием планет и поиском внеземной жизни. Пол Горовиц, физик из Гарвардского университета, внес ряд важных нововведений в программу SETI и жаждал их опробовать. Если бы он смог найти финансирование начала работы, поддержку организации можно было бы продолжить за счет пожертвований ее членов. В 1983 г. мы с Энн Друян подсказали кинорежиссеру Стивену Спилбергу, что это просто идеальный проект, который он мог бы поддержать. Нарушая традиции Голливуда, Спилберг снял два неслыханно успешных фильма, в которых развивал идею, что инопланетянам совсем необязательно быть враждебными и опасными. Спилберг согласился. Благодаря его поддержке силами «Планетного общества» был запущен проект META. Аббревиатура META означает «Поиск внеземных цивилизаций с помощью многоканальных приемников» (Megachannel ExtraTerrestrial Assay). Первый приемник Дрейка работал всего на одной частоте, а здесь количество частот увеличилось до 8,4 млн. Но каждый канал, каждая настраиваемая нами «станция» охватывает исключительно узкий диапазон частот. Среди звезд и галактик нет никаких известных процессов, которые могли бы давать такие четкие «радиолинии». Если мы зафиксируем передачу, укладывающуюся в столь узкий канал, то, на наш взгляд, это должно быть признаком ее разумного и технологического происхождения. Более того, Земля вращается – это означает, что для любого далекого радиоисточника будет характерно отчетливое видимое движение, напоминающее восход и закат звезд. Подобно тому, как частота сигнала автомобильного клаксона понижается, когда машина удаляется от вас, так и частота подлинного инопланетного радиоисточника будет постоянно изменяться по мере вращения Земли. Напротив, любой земной радиоисточник, вызывающий радиопомеху, будет вращаться с той же скоростью, что и приемник META. Частоты приема META постоянно изменяются с поправкой на вращение Земли, поэтому любые узкополосные сигналы из космоса всегда будут попадать в один и тот же канал. При этом любая радиопомеха, возникающая здесь, на Земле, сразу же «вскроется», прокатываясь по смежным каналам. Диаметр телескопа META, расположенного в Гарварде, штат Массачусетс, равен 26 м. Каждый день, когда телескоп вращается под небом вместе с Землей, он прочесывает и проверяет участок неба, по площади чуть меньше диска полной Луны. На следующий день – соседний участок. За год удается просмотреть все северное полушарие неба и часть южного. Идентичная система, также спонсируемая «Планетным обществом», действует близ Буэнос-Айреса в Аргентине и проверяет южную часть неба. Так, вместе две системы META исследуют все небо. Радиотелескоп, прикованный к вращающейся Земле гравитацией, «отсматривает» каждую конкретную звезду в течение примерно двух минут. Затем переходит к следующей. Кажется, что 8,4 млн каналов – это много, но не забывайте, что каждый канал очень узок. Все они в сумме составляют лишь несколько единиц на 100 000 в доступном радиоспектре. Итак, нам придется пристроить наши 8,4 млн каналов в той или иной части радиоспектра в каждый год наблюдений поблизости от такой частоты, на которой инопланетная цивилизация, ничего о нас не знающая, все-таки может рассчитывать, что именно здесь мы будем ее слушать. Водород с отрывом лидирует среди всех элементов по распространенности во Вселенной. Он находится в межзвездном пространстве в виде облаков и диффузного газа. Получая энергию, атом водорода излучает часть ее, испуская радиоволны на частоте ровно 1420,405751768 МГц. Один герц означает, что пик и впадина волны поступают в детектор раз в секунду. Таким образом, 1420 МГц означает 1420 миллионов волн, попадающих в детектор каждую секунду. Поскольку длина световой волны – это отношение скорости света к частоте волны, 1420 МГц соответствуют волне длиной 21 см. Радиоастрономы из любой части Галактики будут изучать Вселенную на частоте 1420 МГц и могут рассчитывать, что другие астрономы, как бы диковинно они ни выглядели, поступят так же. Все равно как если бы вам сказали, что в частотном диапазоне вашего домашнего приемника вещает всего одна радиостанция, но никто не знает, на какой именно частоте. Другая ситуация: шкала частот вашего радиоприемника снабжена стрелкой, положение которой вы регулируете, вращая ручку. Эта шкала простирается от Земли до Луны. Чтобы систематически прочесать весь этот спектр, терпеливо поворачивая ручку, потребовалось бы очень много времени. Ваша задача – правильно установить стрелку на шкале с самого начала, выбрать правильную частоту. Если удастся угадать те «волшебные» частоты, на которых инопланетяне попробуют с нами связаться, то мы сможем сэкономить массу времени и избавиться от многочисленных сложностей. Именно по таким причинам мы (и Дрейк в частности) начали слушать около 1420 МГц, «волшебной» частоты водорода. Мы с Горовицем опубликовали подробные результаты за пятилетний период полномасштабных поисков в рамках проекта META и за двухлетний период последующих наблюдений. Нет, мы не получили сигналов от инопланетян. Но мы обнаружили кое-что удивительное, нечто, из-за чего у меня в минуты покоя иногда пробегают мурашки. Разумеется, мы зафиксировали фоновый радиошум Земли – от радиостанций и телебашен, самолетов, мобильных телефонов, ближних и более далеких космических аппаратов. Кроме того, как и в случае с любыми радиоприемниками, чем дольше вы ждете, тем выше вероятность каких-нибудь случайных флуктуаций электроники, настолько сильных, что в результате возникает какой-нибудь подозрительный сигнал. Итак, мы игнорировали все, что было не намного громче радиошума. Любой сильный узкополосный сигнал, остающийся в отдельном канале, мы рассматривали очень серьезно. В процессе записи данных META автоматически подсказывает оператору, чтобы он обратил внимание на определенные сигналы. За пять лет мы произвели около 60 трлн наблюдений на разных частотах, исследовав всю доступную область неба. После отсева осталось несколько десятков сигналов. Их мы изучали более тщательно, и практически все пришлось отвергнуть – например, ошибку могли обнаружить проверочные микропроцессоры, контролирующие те микропроцессоры, что заняты регистрацией сигналов. Остались самые многообещающие потенциальные сигналы, полученные после трех обзоров неба. Всего 11 «событий». Они отвечают всем критериям подлинного инопланетного сигнала, кроме одного – повторяемости. Мы ни разу не смогли зафиксировать ни один из этих сигналов повторно. Мы возвращались к обзору той самой области неба спустя три минуты и ничего там не находили. Слушали через три дня – ничего. Проверяли спустя год или через семь лет – по-прежнему ничего. Кажется маловероятным, что любой сигнал, который мы получаем от инопланетной цивилизации, прекратится через пару минут после начала приема и ни разу не повторится. (Как инопланетяне узнают, что мы обратили внимание на сигнал?) Но, вполне возможно, такой эффект вызван мерцанием. Звезды мерцают, поскольку турбулентные потоки воздуха пересекают луч зрения, направленный от нас к звезде. Иногда небольшой объем воздуха срабатывает в качестве линзы и приводит к слабой фокусировке лучей конкретной звезды, из-за чего звезда на миг становится ярче. Аналогично могут мерцать и астрономические радиоисточники – причиной тому облака электрически заряженного (ионизированного) газа, присутствующие в великом межзвездном «почти-вакууме». Как правило, именно это мы фиксируем при наблюдении пульсаров. Представим себе радиосигнал чуть слабее такого, какой мы могли бы уловить на Земле. Иногда такой сигнал ненадолго может оказаться сфокусированным, усиленным и попадет в пределы обнаружения наших радиотелескопов. Самое интересное, что срок существования подобных вспышек, диктуемый физикой межзвездного газа, составляет несколько минут – и шанс повторно поймать такой сигнал очень мал. Мы должны в самом деле неотрывно наблюдать в небе точку с такими координатами на протяжении нескольких месяцев. Несмотря на то что ни один из этих сигналов не повторяется, с ними связан еще один факт. Как только я задумываюсь о нем, холодок пробегает по спине: 8 из 11 самых многообещающих сигналов такого рода лежат в плоскости галактики Млечный Путь или поблизости от этой плоскости. По одному из пяти наиболее сильных сигналов получены из созвездий Кассиопея, Единорог и Гидра и два – из созвездия Стрелец, что примерно в районе центра Галактики. Млечный Путь – это плоское скопление звезд, пыли и межзвездного газа, по форме напоминающее колесо. Именно из-за такой уплощенности мы видим его как полосу рассеянного света, протянувшуюся по ночному небу. Именно там находятся почти все звезды нашей Галактики. Если бы наши многообещающие сигналы на самом деле были радиопомехами с Земли или вызваны каким-то трудноуловимым сбоем в электронных детекторах, мы не должны были бы улавливать их преимущественно тогда, когда направляли телескоп прямо на Млечный Путь. Но, может быть, мы столкнулись с исключительно неудачным статистическим совпадением, которое просто путает нас. Вероятность того, что такая корреляция с плоскостью Галактики возникла совершенно случайно, составляет менее полпроцента. Представьте себе карту звездного неба на целую стену. В самом верху расположена Полярная звезда, в самом низу – более тусклые звезды, находящиеся близ южного полюса неба. По этой карте змеятся неровные контуры Млечного Пути. Теперь предположим, что у вас завязаны глаза и при этом вас попросили наугад метнуть в эту карту пять дротиков (причем большая часть южного неба, невидимая из Массачусетса, объявляется «молоком»). Вам придется метнуть пятерку дротиков более 200 раз, прежде чем вы сможете случайно уложить их в окрестностях Млечного Пути настолько плотно, как расположились пять сильнейших сигналов, зафиксированных META. Однако при отсутствии повторяющихся сигналов мы никак не сможем заключить, что действительно обнаружили внеземной разум.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|